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CHAPTER 1. INTRODUCTION

Finding cause-@ect relationships is the central aim of many studies in the physical, behiagiora
cial and biological sciences. There have been many attempts to theorisecabeality. We consider
two well-known mathematical causal modeBtructural equation models (SEMm)dcausal Bayesian
networks (BNs) When we hypothesize a causal model, that model often imposes consbraithts
statistics of the data collected. These constraints enable us to test or fadstiygbthesized causal
model. We developfécient and reliable methods to test a causal model using various types-of con
straints. For linear SEMs, we investigate the problem of generating a snrmalierwf constraints in
the form of zero partial correlations, providing afiegent way to test hypothesized models. For causal
BNs, we study equality and inequality constraints imposed on data and anlg/structure of the

constraints and investigate a way to use these constraints for model testing.

1.1 Linear Structural Equation Models

Linear SEMs are widely used for causal reasoning in social scieecesomics, and artificial
intelligence (Goldberger, 1972; Bollen, 1989; Spirtes et al., 2001} 2P¥¥0). One important problem
in the applications of linear causal models is testing a hypothesized modettthaimiven data. We
seek an fficient method to test linear SEMs with correlated errors. We adopt a lotialpesethod that
involves testing for the vanishing partial correlations instead of the cdioveh method that involves
fitting the covariance matrix.

Since conditional independence relations correspond to zero pantialatmns, the problem re-
duces to that of finding a small set of conditional independence relatianisrtply all other conditional
independence relations encoded inaayclic directed mixed graph (ADMG%uch set of conditional

independence relations is calléolcal Markov propertyfor the ADMG. Using a set of axioms that con-
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ditional independence relations satisfy, we investigate a way to reducectileMarkov property for
ADMGs representing linear SEMs. An additional axiom, cabednpositionwhich holds for normal

distributions, turns out to be a key to reducing the local Markov property.

1.2 Causal Bayesian Networks

In linear SEMs, the causal relationships are expressed in the fornmctidnal equations. In con-
trast, causal BNs express causal relationships in a stochastic wajudyesarious types of constraints
implied by a causal BN for the purpose of model testing.

First, assuming that we have obtained a collection of interventional distrilsutipmanipulating
various sets of variables and observing others, we can ask the foll@uiestion: it this collection
compatible with some underlying causal Bayesian network (even if we da&mw its structure)?
We show that the interventional distributions are completely characterizedsky of equalities and
inequalities. Our result enables us to reject the entire set of models wrigderation. The violation
of any of these equalities and inequalities leads us to conclude that thdyimglenodel is not semi-
Markovian (e.g., there may be feedback loops).

Second, we seek the polynomial equality constraints imposed by a causal lBih non-experimental
and interventional distributions. We propose to use the implicitization proeddugenerate polyno-
mial equality constraints. This approach places causal BNs into the realligetiraic geometry. There
are two main challenges in this problem: (i) Computational complexity. (ii) Undediig structures
of constraints. To deal with challenge (i), we develop methods to reduoathglexity of the implicit-
ization problem utilizing the structural properties of causal BNs. To déhlatallenge (ii), we present
some preliminary results on the algebraic structure of the constraints. Werafsase a model testing
method using polynomial equality constraints.

Third, we study a class of inequality constraints imposed by a causal BN idlifler variables on
both non-experimental and interventional distributions. We derive boandsusal ffects in terms
of non-experimental distributions and given interventional distributiong défive instrumental in-
equality type of constraints upon non-experimental distributions. Althouglkdhstraints we give are

not complete, they constitute necessary conditions for a hypothesized todmetompatible with the
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data. The constraints also provide information (bounds) on fiieete of interventions that have not

been tried experimentally, from observational data and given experihuzéa

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 discusses related work am &t&Vis and causal
BNs. Chapter 3 formally defines causal models. Chapter 4 considensthiem of testing linear SEMs
with correlated errors. Chapter 5 considers the problentfafiently computing polynomial equality

constraints in causal BNs. Chapter 6 investigates inequality constraintssgal&Ns. Chapter 7 is the

conclusion.
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CHAPTER 2. RELATED WORK

In this chapter, we overview related work in causal models. We focuaidous constraints implied

by causal models.

2.1 Linear Causal Models

The conventional method of testing a linear SEM involves maximum likelihood estimatithe
covariance matrix. An alternative approach has been proposediyewdrich involves testing for
the conditional independence relationships implied by the model (Spirtes 4088; Pearl, 1998;
Pearl and Meshkat, 1999; Pearl, 2000; Shipley, 2000, 2003). dVentages of using this new test
method instead of the traditional global fitting test have been discussedri{F8); Shipley (2000);
McDonald (2002); Shipley (2003). The method can be applied in small datples and it can test
“local” features of the model.

To apply this test method, one needs to be able to identify the conditional imdiepee relation-
ships implied by an SEM. This can be achieved by representing the SEM withph galled a path
diagram (Wright, 1934) and then reading independence relations frepeatin diagram. For a linear
SEM without correlated errors, the corresponding path diagram is @elitacyclic graph (DAG). The
set of all conditional independence relations holding in any model assdeidth a DAG, often called a
global Markov property for the DAG, can be read by the d-separatiterion (Pearl, 1988). However,
it is not necessary to test for all the independencies implied by the modeludseat ©f those inde-
pendencies may imply all others. A local Markov property specifies a muchesreat of conditional
independence relations which will imply (using the laws of probability) all ottwerditional indepen-
dence relations that hold under the global Markov property. A well-knlmgal Markov property for

DAGs is that each variable is conditionally independent of its non-descésidiven its parents (Lau-

www.manaraa.com



ritzen et al., 1990; Lauritzen, 1996). Based on this local Markov ptgpRearl and Meshkat (1999)
and Shipley (2000) proposed testing methods for linear SEMs withowlated errors that involve at
most one conditional independence test for each pair of variables.

On the other hand, the path diagrams for linear SEMs with correlated em®mAGs with bi-
directed edges<$) where bi-directed edges are used to represent correlated etr@8G with bi-
directed edges is called acyclic directed mixed graph (ADM@) Richardson (2003). The set of all
conditional independence relations encoded in an ADMG can still be neéal fiatural extension of)
the d-separation criterion (called m-separation in Richardson, 2003hwlovides the global Markov
property for ADMGs (Spirtes et al., 1998; Koster, 1999; Richard2003). A local Markov property
for ADMGs is given in Richardson (2003), which, in the worst case, mayke an exponential number
of conditional independence relations, a shafffedence with the local Markov property for DAGS,
where only one conditional independence relation is associated with aaeble. Shipley (2003)
suggested a method for testing linear SEMs with correlated errors but thednety or may not,
depending on the actual models, be able to find a subset of conditiongkimdience relations that

imply all others.

2.2 Polynomial Constraints in Causal Bayesian Networks

There has been much research on identifying constraints on the nenragptal distributions im-
plied by a BN with hidden variables (Verma and Pearl, 1990; Robins andéffasn, 1997; Desjardins,
1999; Spirtes et al., 2001; Tian and Pearl, 2002b). In algebraic metBbdlisare defined parametri-
cally by a polynomial mapping from a set of parameters to a set of distributibhe distributions
compatible with a BN correspond tesami-algebraic setvhich can be described with a finite number
of polynomial equalities and inequalities. In principle, these polynomial equsaditid inequalities can
be derived by the quantifier elimination method presented in Geiger and NI86R)( However, due
to high computational demand (doubly exponential in the number of probabietaneters), in prac-
tice, quantifier elimination is limited to models with few number of probabilistic parame@egger
and Meek (1998); Garcia (2004); Garcia et al. (2005) used a guweecalledmplicitizationto gen-

erate independence and non-independence constraints on theeghsanvexperimental distributions.
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These constraints consist of a set of polynomial equalities that definendléestalgebraic setthat
contains the semi-algebraic set. Garcia et al. (2005) analyzed the atggthuature of constraints for
a class of small BNs.

Algebraic approaches have been applied in causal BNs to deal withdhlepr of the identifiability
of causal fects (Riccomagno and Smith, 2003, 2004). However, to the best of owlédge, the
implicitization method has not been applied to the problem of identifying consti@iritgerventional

distributions induced by causal BNs.

2.3 Inequality Constraints in Causal Bayesian Networks

It is well-known that the observational implications of a BN are completely cagtoy conditional
independence relationships among the variables when all the variabtdssareed (Pearl et al., 1990).
When a BN invokes unobserved variables, cali&ltlenor latentvariables, the network structure may
impose other equality ayar inequality constraints on the distribution of the observed variables (Verma
and Pearl, 1990; Robins and Wasserman, 1997; Desjardins, 19@@sS3y al., 2001). Methods for
identifying equality constraints were given in Geiger and Meek (1998} &iad Pearl (2002b). Pearl
(1995) gave an example of inequality constraints in the model shown in Riglirdhe model imposes

the following inequality, called thenstrumental inequalitypy Pearl, for discrete variablé§ Y, andZ,
m)?xzy: mZaxP(xy|z) <1 (2.1)

This model has been further analysed using convex analysis apgroBcomet (2001). In principle,
all (equality and inequality) constraints implied by BNs with hidden variablesbeaderived by the
guantifier elimination method presented in Geiger and Meek (1999). Howdwerto high computa-
tional demand (doubly exponential in the number of probabilistic paramgtergjactice, quantifier
elimination is limited to BNs with few number of probabilistic parameters. For exampeculrent
guantifier elimination algorithms cannot deal with the simple model in Figure 24,f6r andZ being
binary variables.

When all variables are observed, a complete characterization of datsta interventional dis-

tributions imposed by a given causal BN has been given in (Pearl, ppd23-4). When a causal BN
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7 Xy

Figure 2.1 U is a hidden variable.

contains unobserved variables, there may be inequality constraints aremttenal distributions Tian
and Pearl (2002a). For the model in Figure 2.1, bounds on catlisatsPy(y) in terms of the nonex-
perimental distributiorP(x, y, z2) was derived in Balke and Pearl (1994); Chickering and Pearl§}199

using linear programming method f& Y, andZ being binary variables.

2.4 Characterizing Interventional Distributions

Another related problem is the characterization of the interventional disortsugenerated from
a causal Bayesian network of “unknown structure”. Assuming that ave lobtained a collection of
interventional distributions by manipulating various sets of variables arehabg others, we can ask
the following question: it this collection compatible witomeunderlying causal Bayesian network
(even if we do not know its structure)? Tian et al. (2006) showed thantbeventional distributions
are completely characterized by a set of equalities and inequalities. Whilerghaese of Kang and Tian
(2006, 2007) is to test a single model (with a fixed structure), the resuiaimdt al. (2006) enables
us to reject the entire set of models under consideration. The violatioryaffahese equalities and
inequalities leads us to conclude that the underlying model isemi-Markoviar(e.g., there may be

feedback loops).
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CHAPTER 3. NOTATION AND DEFINITIONS

In this chapter, we give a formal definition of causal models. Also we inttedcsome concepts

related to algebraic geometry needed to obtain our results.

3.1 Linear Causal Models

The SEM technique was developed by geneticists (Wright, 1934) andmists (Haavelmo, 1943)
for assessing causdfect relationships from a combination of statistical data and qualitative causal
assumptions. It is an important causal analysis tool widely used in so@gices, economics, and
artificial intelligence (Goldberger, 1972; Duncan, 1975; Bollen, 1$g$irtes et al., 2001).

In an SEM, the causal relationships among a set of variables are offtemed to be linear and
expressed by linear equations. Each equation describes the depenflene variable in terms of the

others. For example, an equation

Y =aX+e (3.1)

represents thaX may have alirect causal influence olY and that no other variables have (direct)
causal influences oW except those factors (represented by the error tetraditionally assumed to
have normal distribution) that are omitted from the model. The parameterantifies the (direct)
causal éfect of X onY. An equation like (3.1) with a causal interpretation represents an autorsomou
causal mechanism and is said todbeictural

As an example, consider the following model from Pearl (2000) thatermisdhe relations between
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smoking K) and lung cancerY), mediated by the amount of taf)deposited in a person’s lungs:

X=¢
Z=aX+e
YZbZ+E3

The model assumes that the amount of tar deposited in the lungs dependdevetiof smoking (and
external factors) and that the production of lung cancer dependsantbunt of tar in the lungs but
smoking has noféect on lung cancer except as mediated through tar deposits. To fullifysfiex
model, we also need to decide whether those omitted facipres( €3) are correlated or not. We
may assume that no other factor thfieats tar deposit is correlated with the omitted factors tifata
smoking or lung cancelQoMe, €2) = Coe, €3) = 0). However, there might be unobserved factors
(say some unknown carcinogenic genotype) tifigtca both smoking and lung canc&d\e;, €3) # 0),
but the genotype nevertheless has fieat on the amount of tar in the lungs except indirectly (through
smoking). Often, it is illustrative to express our qualitative causal assungpticterms of a graphical
representation, as shown in Figure 3.1.

We now formally define the model that we will consider in this thesidindar causal mode{or
linear SEM over a set of random variabl®s= {V4, ..., V,} is given by a set of structural equations of

the form
Vj:ZCjiVi+EJ‘, j=l,...,n, (32)
i

where the summation is over the variable¥ijudged to be immediate causes\yf cj;, called apath
cogficient quantifies the direct causal influencewpbnV;. €;’s represent “error” terms due to omitted
factors and are assumed to have normal distribution. We considerivecmedels and assume that the
summation in Eq. (3.2) is far< j, thatis,cj = 0 fori > j.

We denote the covariances between observed variafjlesCoVV;, V;j), and between error terms
vij = CoVs, €j). We denote the following matrices,= [oij], ¥ = [¢ij], andC = [cjj]. The parameters
of the model are the non-zero entries in the matrCemd¥. A parameterization of the model assigns

a value to each parameter in the model, which then determines a unique coxamatmixz given by
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Smoking Tar in lungs Cancer

Figure 3.1 Causal diagram illustrating thieet of smoking on lung cancer

(see, for example, Bollen (1989))
T=(-C) (-t (3.3)

The structural assumptions encoded in the model are the zero pdtitieots and zero error co-
variances. The model structure can be represented by a ®A@h (dashed) bi-directed edges (an
ADMG), called acausal diagram(or path diagran), as follows: the nodes d& are the variables
Vi,...,Vn, there is a directed edge froW to V;j in G if V; appears in the structural equation Ty,
that is,cji # O; there is a bi-directed edge betwegrandV; if the error terms; andej have non-zero
correlation. For example, the smoking-and-lung-cancer SEM is repeesey the causal diagram in
Figure 3.1, in which each directed edge is annotated by the correspgratingodficient.

We note that linear SEMs are often used without explicit causal interpnetdticuch cases, linear
SEMs can be regarded as an extension of regression models. A linkainSthich error terms are
uncorrelated consists of a set of regression equations. Note thatuaticegas given by (3.2) is a
regression equation if and onlydf is uncorrelated with eactf (Co\V;, €;) = 0). Hence, an equation
in an SEM with correlated errors may not be a regression equation. LBiesls provide a more

powerful way to model data than the regression models taking into accoustated error terms.

3.2 Causal Bayesian Networks and Interventions

A causal Bayesian network, also known alarkovian modelconsists of two mathematical ob-
jects: (i) a DAGG, called acausal graphover a seV = {V1,..., Vy} of vertices, and (ii) a probability

distribution P(v), over the seV of discrete variables that correspond to the vertice&.ih In this

We only consider discrete random variables in this thesis.
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thesis, we will assume a topological orderig > ... > V,in G. Vi is always a sink an¥,, is al-
ways a source. The interpretation of such a graph has two componestiappistic and causal. The
probabilistic interpretation view§ as representing conditional independence restriction8: déach
variable is independent of all its non-descendants given its direatfsargthe graph. These restrictions

imply that the joint probability functio®P(v) = P(vy, ..., vyn) factorizes according to the product

PW) = [ | P(ilpa) (3.4)

wherepg are (values of) the parents of variabgin G.

The causal interpretation views the arrowsGmms representing causal influences between the cor-
responding variables. In this interpretation, the factorization of (3.4) sildld) but the factors are
further assumed to represent autonomous data-generation protieasiss each conditional probabil-
ity P(vi|pg) represents a stochastic process by which the valu¥s afe assigned in response to the
valuespg (previously chosen fo¥,'s parents), and the stochastic variation of this assignment is as-
sumed independent of the variations in all other assignments in the modelowdgreach assignment
process remains invariant to possible changes in the assignment potiestsgovern other variables
in the system. This modularity assumption enables us to predictigeof interventions, whenever
interventions are described as specific modifications of some factors imatiegb of (3.4). The sim-
plest such intervention, calleastomic involves fixing a sefl of variables to some constaris = t,

which yields the post-intervention distribution

P(Y) = [Tiivery P(Vilpa) v consistent with. (3.5)
0 v inconsistent witH.

Eq. (3.5) represents a truncated factorization of (3.4), with factoregponding to the manipulated
variables removed. This truncation follows immediately from (3.4) since,nasisgumodularity, the
post-intervention probabilitieB(vi| pa) corresponding to variables ih are either 1 or 0, while those
corresponding to unmanipulated variables remain unalterddsténds for a set of treatment variables
andY for an outcome variable iW \ T, then Eq. (3.5) permits us to calculate the probab#itfy) that
eventY = ywould occur if treatment conditioh = t were enforced uniformly over the population.

When some variables in a Markovian model are unobserved, the probalislitjpution over the

observedyvariablesgmaysne longer be decomposed as in Eq. (3.4V kefVi,...,Vy} andU =

www.manaraa.com



12

{Ug,..., Uy} stand for the sets of observed and unobserved variables respectiveo U variable
is a descendant of arly variable, then the corresponding model is calleskani-Markovian model
We only consider semi-Markovian models. However, the results can ergzed to models with
arbitrary unobserved variables as shown in Tian and Pearl (2002 semi-Markovian model, the

observed probability distributiof®(v), becomes a mixture of products:
PA) = > [ [ Pulpa, u)P(u) (3.6)
u i

wherePA andU' stand for the sets of the observed and unobserved parevitsafd the summation
ranges over all th&) variables. The post-intervention distribution, likewise, will be given as a mextu
of truncated products

1_[ P(vi|pa, u)P(u) v consistent with.
Pi(v) =< u {ilVigT} (3.7)

0 v inconsistent witH.

Assuming that/ is consistent with, we can write
Pi(v) = Pr(v\ 1) (3.8)

In the rest of the thesis, we will ugg(v) and P¢(v \ t) interchangeably, always assumindeing

consistent with.

3.3 Algebraic Sets, Semi-algebraic Sets and Ideals

The set of all polynomials iy, . . . , X, with real codficients is called polynomial ringand denoted
by R[x1,...,X]. Let fy,..., fs be the polynomials iR[xs,..., X,]. A variety or analgebraic set
V(fy,..., fg)isthe sef(as,...,an) € R": fi(az,...,an) = 0forall 1<i < s}. Thus, an algebraic set is
the set of all solutions of a system of polynomial equations.

A subsetV of R" is called asemi-algebraic seif V = U3, n"

1Ny (X € R Pj(X) <ij 0} where

Pij are polynomials irR[ Xy, . .., X,] and <ij is one of the comparison operatdks =, >}. Informally,
a semi-algebraic set is a set that can be described by a finite number abpiody equalities and
inequalities.

ArsubsetlyeR[XxummmXal is called anideal if it satisfies:
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(i) Oel.
(i) If f,gel,thenf+gel.
(i) If f elandheR[xy,...,X,], thenhfel.

The ideal generated by a set of polynomiis. . ., g, is the set of polynomialk that can be written as
h= 3, fig wheref; are polynomials in the ring and is denoted(y, . . ., gn). The sum of two ideals
landJistheset +J={f+g: fel, geJlanditholdsthatil = (fy,..., f;yandJ =<(gi,...,0s),
thenl + J = (f1,..., fr,01,...,0s). See Cox et al. (1996) for more details.
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CHAPTER 4. MARKOV PROPERTIES FOR LINEAR CAUSAL MODELS WITH
CORRELATED ERRORS

In this chapter, we seek to improve the local Markov property given ind&adon (2003) for lin-
ear SEMs with correlated errors. The local Markov property in Ricsamd2003) is applicable for
ADMGs associated with arbitrary probability distributions. Specifically, omisgraphoid axioms
which must hold in all probability distributions (Pearl, 1988) are used in gigpthat the set of condi-
tional independence relations specified by the local Markov propertymylly all those specified by
the global Markov property. On the other hand, in linear SEMs, variabieassumed to have normal
distributions, and it is known that normal distributions also satisfy the soecatienposition axiom.
Therefore, in this chapter, we look for local Markov properties folMNBs associated with probability
distributions that satisfy the composition axiom. We will show that for a classi¥i&s, the local
Markov property will invoke only one conditional independence relatmmefich variable, and there-
fore the testing for the corresponding linear SEMs will involve at most @melitional independence
test for each pair of variables. For general ADMGs, we provide agutore that reduces the number
of conditional independencies invoked by the local Markov propesgrgin Richardson (2003), and
therefore reduces the complexity of testing linear SEMs with correlatedserro

In the test of conditional independence relations, tiieiency of the test is influenced by the size
of the conditioning set (that is, the number of conditioning variables) with dl smaditioning set
having advantage over a large one. The conditional independentierrelanvoked by the standard
local Markov property for DAGs use a parent set as the conditionihgRearl and Meshkat (1999)
have shown for linear SEMs without correlated errors how to find afsebreditional independence
relations that may involve fewer conditioning variables. In this chapter,lsegeneralize this result

to linear SEMs with correlated errors.
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The chapter is organized as follows. In Section 4.1, we introduce basitiaroand definitions,
and present the local Markov property developed in Richardson3§20h Section 4.2, we show
that for a class of ADMGs, there is a local Markov property for proligidistributions satisfying
the composition axiom that invokes only a linear number of conditional indkgrere relations. We
also show a local Markov property that may involve fewer conditioningatdes. In Section 4.3, we
consider general ADMGs (for probability distributions satisfying the cositimn axiom) and show a

local Markov property that invokes fewer conditional independertbias that in Richardson (2003).

4.1 Preliminaries and Motivation

4.1.1 Model Testing and Markov Properties

One important task in the applications of linear SEMs is to test a model agaiasQtze approach
for this task is to test for the conditional independence relationships implideebyiodel, which can be
read from the causal diagram by the d-separation criterion as defitteslfinllowing.® A pathbetween
two verticesV; andV; in an ADMG consists of a sequence of consecutive edges of any typetédl
or bi-directed). A vertew; is said to be amncestorof a vertexV; if there is a pathv; — --- — V;.
A non-endpoint verteXV on a path is called aollider if two arrowheads on the path meet\&t i.e.
> W, oWo, oW, - W o; all other non-endpoint vertices on a path aom-colliders i.e.
W=, «We, ->W-—, W, « W . Apath between verticeg andVj in an ADMG is

said to bed-connecting given a sef verticesZ if

1. every non-collider on the path is notZnand

2. every collider on the path is an ancestor of a vertex.in

If there is no path d-connecting andV; givenZ, thenV; andV; are said to be&-separatedjivenZ.
SetsX andY are said to bel-separatedyiven Z, if for every pairVj, Vj, with V; € X andV; € Y, V;
andV; are d-separated giveh Let (X, Z Y) denote thakX is conditionally independent of givenZ.
The set of all the conditional independence relations encoded by al chagranG is specified by the

following global Markov property.

1The d-separation criterion was originally defined for DAGs (Pearl, 1888can be naturally extended for ADMGs and
is called m-separation in Richardson (2003).
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Vs Vs V3

Figure 4.1 A causal diagram

Definition 1 (The Global Markov Property (GMP)) A probability distribution P is said to satisfy the

global Markov property for G if for arbitrary disjoint sets, X Z,
(GMP) X is d-separated from Y given Z in&> (X, ZY). 4.1

The global Markov property typically involves a vast number of conditioxdependence relations and
itis possible to test for a subset of those independencies that will imply allotA local Markov prop-
erty specifies a much smaller set of conditional independence relationk whliémply by the laws
of probability all other conditional independence relations that hold utgeglobal Markov property.
For example, a well-known local Markov property for DAGs is that eaatieble is conditionally inde-
pendent of its non-descendants given its parents. The causaldiémra linear SEM with correlated
errors is an ADMG and a local Markov property for ADMGs is given infiRicdson (2003).

Note that in linear SEMs, the conditional independence relations will quoresto zero partial

correlations (Lauritzen, 1996):
pvvjz = 0= I({Vi}, Z {Vj}). (4.2)

As an example, for the linear SEM with the causal diagram in Figure 4.1, ifseghe local Markov
property in Richardson (2003), then we need to test for the vanishitigedollowing set of partial

correlations (for ease of notation, we wrjigz to denotepvivj,z):

{021, 0321, P43.2, P41.2, 543, P52.3, P51.35 6453, 06253, 06153, 06435 6235 0613, 0726543

P716543 P72643, L71643 0754, P734, P724, P714}- (4.3)
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The local Markov property in Richardson (2003) is valid for any piolig distributions. In fact,
the equivalence of the global and local Markov properties is provieg tise following so-calledemi-

graphoid axiomgPearl, 1988) that probabilistic conditional independencies must satisfy:

e Symmetry

(X, ZY) = (Y, Z X)

e Decomposition

(X, ZYUW) = I(X,Z,Y) & (X, Z, W)

e \Weak Union

I(X,ZYUW) = [(X,ZUWY)

e Contraction

(X, Z,Y) & I(X,ZU Y,W) = (X, Z,Y U W)

whereX, Y, Z, andW are disjoint sets of variables.
On the other hand, in linear SEMs the variables are assumed to have nasiriautions, and

normal distributions also satisfy the followigpmpositioraxiom:

e Composition

(X, ZY) & (X, ZW) = [(X,Z, Y UW).

Therefore, we expect a local Markov property for linear SEMs to keviewer conditional indepen-
dence relations than that for arbitrary distributions. In this chapter, weliilve reduced local Markov
properties for linear SEMs by making use of the composition axiom. As an dgafopthe linear SEM

in Figure 4.1, a local Markov property which we will present in this chafdee Section 4.2.3) says

that we only need to test for the vanishing of the following set of partiaketations:

{021, P32, P43, P41, P54, P52, P513, P64 P62 L6135 P75 P73, P71, P72.4)- (4.4)

The number of tests needed and the size of the conditioning aet both substantially reduced com-

pared with (4.3), thus leading to a more economical way of testing the givealmod
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Figure 4.2 An ADMG and its compressed graph

4.1.2 A Local Markov Property for ADMGs

In this section, we describe the local Markov property for ADMGs as$ed with arbitrary prob-
ability distributions presented in Richardson (2003). In this chapter, thik®groperty will be used
as an important tool to prove the equivalence of our local Markov ptigseand the global Markov
property.
First, we define some graphical notations. For a vexéx an ADMG G, pas(X) = {Y|Y — Xin
G} is the set oparentsof X. spz(X) = {Y|Y & Xin G} is the set obpouse®f X. ans(X) = {Y|Y —
-+ = XinGorY = X} is the set ofancestorof X. And des(X) = {Y|Y « --- « XinGorY = X} is
the set ofdescendantef X. These definitions will be applied to sets of vertices, so that, for example,

pas(A) = Uxeapas(X), Sps(A) = Uxeasis(X), etc.

Definition 2 (C-component)A c-component of G is a maximal set of vertices in G such that any two
vertices in the set are connected by a path on which every edge is of the-fpa vertex that is not

connected to any bi-directed edge forms a c-component by itself.

For example, the ADMG in Figure 4.2 (a) is composed of 6 c-compongfis {V>}, {Va}, {Va},
{Vs, V6, V7} and{Vg, Vg}. Thedistrict of X in G is the c-component @& that includesX. Thus,

disg(X) ={Y[Y & --- o XinGorY = X}.

For example, in Figure 4.2 (a), we havedligs) = {Vs, Vg, V7} and dig(Vs) = {Vs, Vg}. A setAis said

to,beancestralif;itiis;closed,under the ancestor relation, i.e. i) = A. Let Ga denote the induced
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subgraph of5 on the vertex sef\, formed by removing fronG all vertices that are not iA, and all

edges that do not have both endpoint&in

Definition 3 (Markov Blanket) 2 If A is an ancestral set in an ADMG G, and X is a vertex in A that
has no children in A then thilarkov blanket of vertex X with respect to the induced subgraph pn A

denotedmb(X, A) is defined to be
mb(X, A) = pgg, (disc, (X)) U (disc,(X) \ {X}).
For example, for an ancestral #et ans({Vs, Vs}) = {V1, V2, V3, V4, V5, Vg} in Figure 4.2 (a), we have
mb(Vs, A) = {Va, V4, Ve}.

An ordering &) on the vertices o6 is said to be consistent wiB if X <Y = Y ¢ arng(X). Given a

consistent ordering, let pres <(X) = {Y|Y < XorY = X}.

Definition 4 (The Ordered Local Markov Property (LMP, <)) A probability distribution P satisfies
the ordered local Markov property for G with respect to a consisteneng <, if, for any X and

ancestral set A such that XA C preg _(X),
(LMP,<) [({X}, mb(X, A), A\ (mb(X, A) U {X})). (4.5)

Theorem 1 (Richardson, 2003f G is an ADMG andx is a consistent ordering, then a probability
distribution P satisfies the ordered local Markov property for G with respec< if and only if P

satisfies the global Markov property for G.

We will write (GMP) < (LMP,<) to denote the equivalence of the two Markov properties. There-
fore the (smaller) set of conditional independencies specified in theealrdecal Markov property
will imply all other conditional independencies which hold under the globatkigha property. It

is possible to further reduce the number of conditional independend&®nslan the ordered local
Markov property. An ancestral sé with X € A C pre; _(X) is said to bemaximal with respect

to the Markov blankemb(X, A) if, whenever there is a sé such thatA ¢ B C prez<(X) and

mb(X, A) =mb(X, B), then A = B. For example, suppose that we are given an ordesiny/; <

2ThedefinitionsofiMarkoviblanket here follows that in Richardson (2008)ia compatible with that in Pearl (1988).
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Vo < V3 < Vg < V5 < Vg < V7 < Vg < Vg for the graphG in Figure 4.2 (a). While an ances-
tral setA = ans({Vs, Vs, V7}) = {V1, V2, V3, V4, V6, V7} is maximal with respect to the Markov blanket
mb(V7, A) = {V4, Ve}, an ancestral sét’ = ars({Ve, V7)) = {V2, V4, V6, V7} is not. It was shown that
we only need to consider ancestral s&tehich are maximal with respect to nX(A) in the ordered
local Markov property (Richardson, 2003). Thus, we will considdy smaximal ancestral sefswhen
we discuss (LMR) for the rest of this chapter. The following lemma characterizes maximaktaate

sets.

Lemma 1 (Richardson, 2003)et X be a vertex and A an ancestral set in G with consistent ordering
< such that Xe A c pres .(X). The set A is maximal with respect to the Markov blamkbgX,A) if
and only if
A = preg .(X) \ deg(h(X, A))
where
h(X, A) = sps(dis, (X)) \ (IX} U mb(X, A)).

Even though we only consider maximal ancestral sets, the ordered lackb¥property may still
invoke an exponential number of conditional independence relationsexample, for a verteX, if
diss(X) ¢ pres <(X) and dig(X) has a clique of vertices joined by bi-directed edges, then there are
at leastO(2"1) different Markov blankets.

It should be noted that only the semi-graphoid axioms were used to pr@adr 1 on the equiv-
alence of the two Markov properties and no assumptions about probaligitibdtions were made.
Next we will show that the ordered local Markov property can be furtbduced if we use the com-
position axiom in addition to the semi-graphoid axioms. The local Markov ptiegeve obtained (in
Sections 4.2 and 4.3) are not restricted to linear causal models in that thagtaally valid for any

probability distributions that satisfy the composition axiom.

4.2 Markov Properties for ADMGs without Directed Mixed Cycles

In this section, we introduce three local Markov properties for a clagsDdflGs and show that
they are equivalent to the global Markov property. Also, we discuasegwork in maximal ancestral

graphs;and,chaingraphs=First, we give some definitions.
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Figure 4.3 Directed mixed cycles

Definition 5 (Directed Mixed Cycle) A path is said to be a directed mixed path from X to Y if it
contains at least one directed edge and every edge on the path is eitherfofm Z& W, or Z— W
with W between Z and Y. A directed mixed path from X to Y together with an edgXYr Y « X

is called a directed mixed cycle.

For example, the patk —» Z & W — Y « X in the graph in Figure 4.3 forms a directed mixed cycle.

In this section, we will consider only ADMGs without directed mixed cycles.

Definition 6 (Compressed Graph)Let G be an ADMG. The compressed graph of G is defined to be
the graph G = (V',E’), V' = {Vc | C is a c-component of GE’ = {V¢, — V; | there is an edge X
Y in G such that X% C;,Y € Cj}.

Figure 4.2 shows an ADMG and its compressed graph. If there exists @edirmixed cycle in an
ADMG G, there will be a cycle or a self-loop in the compressed grapB.ofor example, if for two
verticesX andY in a c-component of G there exists an edgé — Y, then the compressed graph®f

contains a self-loog;. The following proposition holds.

Proposition 1 Let G be an ADMG. The compressed graph of G is a DAG if and only if Gnbas
directed mixed cycles.

4.2.1 The Reduced Local Markov Property

In this section, we introduce a local Markov property for ADMGs withouected mixed cycles
which only invokes a linear number of conditional independence relatimhsizow that it is equivalent

to the global local Markov property.
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Definition 7 (The Reduced Local Markov Property (RLMP)) Let G be an ADMG without directed

mixed cycles. A probability distribution P is said to satisfy the reduced locak®Maproperty for G if
(RLMP) vXeV, 1({X}, pas(X),V\ (X G)) (4.6)
wheref(X, G) = pag(X) U deg({X} U sps(X)).

The reduced local Markov property states thagariable is independent of the variables that are neither

its descendants nor its spouses’ descendants given its parents

Theorem 2 If a probability distribution P satisfies the composition axiom and an ADMG Grtwas

directed mixed cycles, then

(GMP) = (RLMP). (4.7)

Proof: (GMP) = (RLMP)
We need to prove that any variat¥es d-separated frod \ f( X, G) given pg(X) in G with no directed
mixed cycle. Consider a vertexe V \ f(X, G). We will show that there is no path d-connectiXgnd

« given pg(X). There are four possible cases for any path betweande.
1. X<
2. X > s> Sk
3. X yex--qa
4 Xoy—o o5 k-

A symbol« serves as a wildcard for an end of an edge. For examplaepresents both- and«. In
case 18 € pg;(X). In case 2, the collidef is not an ancestor of a vertex ing(&x) (otherwise, there
would be a cycle). In cases 3 and 4, neitliaror ¢ is an ancestor of a vertex in g&X) (otherwise,

there would be directed mixed cycles). In any case, the path is not cectimg. [ |

Pioofi (REMP):==-(GMP)
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We will show that for some consistent orderirg(RLMP) = (LMP, <). Then, by Theorem 1, we
have (RLMP)= (GMP).

We construct a consistent ordering with the desired property as follows.
1. Construct the compressed graphof G.

2. Let<’ be any consistent ordering @i. Construct a consistent orderirgfrom <’ by replacing
eachV¢ (corresponding to each c-componéhof G) in <’ with the vertices irC (the ordering

of the vertices in C is arbitrary).

We now prove that (RLMP3= (LMP,<). Assume that a probability distributid? satisfies (RLMP).
Consider the set of conditional independence relations invoked by &M& each variableX given

in (4.5). First, observe that for any vert&xn disg,(X), we have
A\ (pag(Y) U{Y} Usps(Y)) € V(Y. G), (4.8)
since

A\ (pag(Y) U {Y} U sps(Y))
= A\ ((Pa(Y) U 1Y) U sRs(1) U (des (¥} U sRs(Y) | (1Y) U sRs(1)) (4.9)

= A\ (Y, G).

The equality (4.9) holds since the vertices (&} U sps(Y)) \ ({Y} U sps(Y)) do not appear iA
(because of the way is constructed, no descendant ofg}i&X) is in A). Thus, by (4.6), for allY in

disg,(X), we have
L({Y}, pag(Y), A\ (pag(Y) U {Y} U s, (Y)). (4.10)

Let S1 = pag(disc,(X)) \ pag(Y) andS, = A\ (mb(X, A) U {X}). It follows that

S1 € A\ (pas(Y) U{Y}Usps(Y)) and (4.11)
S2 € A\ (pa(Y) U {Y} U sps(Y)). (4.12)

Also, we have
S1NS; =0, (4.13)

www.manaraa.com



24

sinceS; € mb(X, A). Therefore,

[({Y}, pag(Y),S1U Sy) by decomposition (4.14)
[({Y}, pag(Y) U S1, S) by weak union (4.15)
| (diss, (X). Pas(dis, (X)), A\ (Mb(X, A) U (X)) by composition (4.16)
1({X)., Pa (diss, (X)) U (diss, (X) \ (X)),

A\ (mb(X, A) U {X})) by weak union. (4.17)

Thus, by the definition of the Markov blanket ¥fwith respect toA, we have

[({X}, mb(X, A), A\ (mb(X, A) U {X})). (4.18)

[ ]

As an example, consider the ADMG in Figure 4.2 (a) which has no directed mixed cycles. The
graph in Figure 4.2 (b) is the compressed gr&jlof G described in the proof. From the ordering
<"1 V1 < V2 < V3 < V4 < V567 < Vgg, We obtain the ordering: V1 < Vo < V3 < V4 < V5 < Vg < V7 <

Vg < V. The ordered local Markov property (LM#),involves the following conditional independence

relations:
1({V2},0,{V1}), I({V3}, {V1}, {V2}),
[ ({Va}, {V2}, {V1, V3}), I ({Vs}, {Va}, {V1, V2, Va}),
| ({Ve}. {V3, Va, Vs}, {V1, V2}), | ({Ve}, {Va}, {V1, V2, V3}),
1({V7},{V3, Va, V5, Ve}, {V1, V2}), 1 ({V7},{Va, Ve}, {V1, V2, V3}),
I ({V7}, {Va}, {V1, V2, V3, Vs}), | ({Vs}, {Ve}, {V1, V2, V3, Va, V5, V7}),
| ({Va}, {V2, V6, V7, Vs}, {V1, V3, V4, Vs}), [ ({Va}, {V2, V7}, {V1, V3, Va4, V5, V6}). (4.19)
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(RLMP) invokes the following conditional independence relations:

[({V1}, 0, {V2, Va, Ve, V7, Vg, Vo)), [({V2}, 0, {V1, V3, Vs}),

[ ({Va}, {Va}, {V2, Va, V6, V7, Vg, Vo)), [ ({Va}, {V2}, {V1, V3, Vs}),

[({Vs}, {V3}, {V1, V2, Va, V7, Vo)), I ({Ve}, {Va}, {V1, V2, Va}),

[({V7}, {Va}, {V1, V2, V3, Vs}), I ({Vs}, {Ve}, {V1, V2, V3, Va, Vs, V7)),

1 ({Vo}, {V2, V7}, {V1, V3, Va4, Vs, Ve}) (4.20)

which, by Theorem 2, imply all the conditional independence relations i®)4.1
For the special case of graphs containing only bi-directed etif@siermann (1996) provides a

local Markov property for probability distributions obeying the compositigiom as follows:
vXeV, [I({X},0,V\ ({X} U sps(X))). (4.21)

Since a graph containing only bi-directed edges is a special case of ADMIBGout directed mixed
cycles, the reduced local Markov property (RLMP) is applicable, ahdhits out that (RLMP) reduces
to (4.21) for graphs containing only bi-directed edges. ThereforéMRLincludes the local Markov

property given in Kauermann (1996) as a special case.

4.2.2 The Ordered Reduced Local Markov Property

The set of zero partial correlations corresponding to a conditionapart#ence relation(X, Z, Y)

v,z =01 Vi e X,V e Y. (4.22)

Although (RLMP) gives only a linear number of conditional independenetations, the number of
zero partial correlations may be larger than that invoked by (Y1l some cases. For example, 12
conditional independence relations in (4.19) involve 37 zero partiablatdions while 9 conditional
independence relations in (4.20) involve 41 zero partial correlationthidrsection, we will show an
ordered local Markov property such that at most one zero partiedledion is invoked for each pair of

variables.

SKauermann (1996) actually used undirected graphs with dashed wHggsare Markov equivalent to graphs with only
bi=directedredgesi(seesRichardson, 2003, for discussions).
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Definition 8 (C-ordering) Let G be an ADMG. A consistent orderirgon the vertices of G is said to

be a c-ordering if all the vertices in each c-component of G are contislyoordered in<.

For example, the ordering; < Vo < V3 < V4 < V5 < Vg < V7 < Vg < Vg is a c-ordering on the

vertices ofG in Figure 4.2 (a). The following holds.
Proposition 2 There exists a c-ordering on the vertices of G if G does not have diredbaxt] cycles.

We can easily construct a c-ordering from the compressed gragh &¥e introduce the following

Markov property.

Definition 9 (The Ordered Reduced Local Markov Property (RLMP,<.)) Let G be an ADMG with-
out directed mixed cycles and. be a c-ordering on the vertices of G. A probability distribution P is

said to satisfy the ordered reduced local Markov property for G with ressjoe<. if

(RLMP,<c) VX eV, 1({X}, pas(X). preg . (X) \ (X} L pag(X) U sps(X)))- (4.23)

The ordered reduced local Markov property states shadriable is independent of its predecessors,
excluding its spouses, in a c-ordering given its pareM& now establish the equivalence of (GMP)

and (RLMPx,).

Theorem 3 If a probability distribution P satisfies the composition axiom and an ADMG Gnrimas

directed mixed cycles, then for a c-orderirgon the vertices of G,

(GMP) = (RLMP<). (4.24)

Proof: (GMP)=> (RLMP<)

The set prg . (X) does not include any descendant olsfl$) since< is a c-ordering. We have
preg . (X) \ ({X} U pag(X) U sps(X))
= preg, .04\ (X1 U pas () U sRs(X) U (des((X) U sRs(30) \ (X0 U s (X))

= Pres < (X) \ (X, G)

C V\ (X G). (4.25)
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Hence, (RLMP.) follows from (RLMP). |

Proof: (RLMP,<;) = (GMP)

We will show that (RLMPx¢) = (LMP,<¢). Assume that a probability distributidghsatisfies (RLMR).
Let g(Y) = pres - (Y) \ (Y} U pag(Y) U sps(Y). Consider the set of conditional independence relations
invoked by (LMPx.) for each variableX given in (4.5). By (4.23), for alY in disg,(X), we have

I(Y, pag(Y), 9(Y)). (4.26)
Let Sy = pag(disc, (X)) \ pag(Y) andS, = A\ (mb(X, A) U {X}). We have that
S1 cg(Y). (4.27)
Note thatS;, \ g(Y) may be non-empty. L83 = S, \ g(Y). It suffices to show that
[(Y, pag(Y). S3), (4.28)

which impliesl (Y, pa;(Y), S2). Then, the rest of the proof would be identical to that of Theorem 2.

We first characterize the vertices$3. We will show that
Sz = (Pre <. (X) \ preg - () \ sps(disg, (X)) (4.29)
By Lemma 1, we have
S2 = preg <, (X) \ (des(h(X. A)) U mb(X, A) U X)) (4.30)
Since<c is a c-ordering, no descendant of ¢liX) will appear inA. Hence,
Sz = preg - (X) \ (sps(diss, (X)) U pag(disc,(X))). (4.31)
To identify some common elements 85 and g{Y), we will reformulateS, and g{Y) as follows.

Sz = (B\ pas(dise, (X)) U ((diss(X) N pres - (X)) \ sps(dise, (X)) (4.32)

9(Y) = (B\ pas(Y)) U ((diss(X) N pre; - () \ ({Y} Usps(Y))) (4.33)
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whereB = pres . (X) \ disg(X). This can be verified by noting thag = Az \ (A3 U Ag) = (A1 \ A2) U
(A2 \ Ag) if Ar = A1 U Ap, Ass N A1 = 0, A2 € Apa, Az C Agp. From pag(Y) € pag(diss,(X)), it
follows thatB \ pag(disc,(X)) € B\ pag(Y) and

S3=52\9g(Y)
=((diss(X) N preg -, (X)) \ sps(dise, (X))
\ ((diss(X) N preg . () \ ({Y} U sps(Y)))- (4.34)

We can rewrite the first part of this expression as follows.

(disg(X) N preg - (X)) \ sps(disga (X))

= ((diss(X) N pres -, (Y)) \ sps(diss, (X))

U ((pres,«,(¥) \ pres <, (Y)) \ sps(dise, (X)) (4.35)
From (digs(X) N pres - (Y)) \ sps(dis, (X)) < (disc(X) N pres - (Y)) \ ({Y} U sps(Y)), (4.29) follows.

Thus, the vertices i83 are those in the set pge _(X) \ pres - (Y) and not in the set gfdiss, (X)).

Now we are ready to provHY, pas(Y),S3). For anyZ € Sz, we haveY < Z andZ ¢ sps(Y).

Hence,
({2}, pas(2), 9(2)) (4.36)
1({Z}, pag(2), {Y} U (pas(Y) \ pas(2))) by decomposition (4.37)
[({Z}, pag(Z2) U pag(Y),{Y}) by weak union (4.38)
1({Y}, pas(Y). pas(2) \ pas(Y)) (4.39)
[({Y}, pas(Y). {Z}) by contraction. (4.40)
Therefore, by composition(Y, pas(Y), Ss) holds. ]

(RLMP,<¢) invokes one zero partial correlation for each pair of nonadjaceisthlas. For example,

for the ADMGG in Figure 4.2 (a) and a c-ordering: V1 < Vo < V3 < V4 < V5 < Vg < V7 < Vg < Vg,
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(RLMP,<c) invokes the following conditional independence relations:

1({V2}, 0, {V1}), I ({Vs}, {V1}, {V2}),

| ({Va}, {V2}, {V1, V3}), I ({Vs} (V) {V1, Va2, Va)),

| ({Ve}, {Va}, {V1, V2, V3}), I ({V7}, {Va}, {V1, V2, V3, Vs}),

| ({Vs}, {Ve}, {V1, V2, V3, V4, V5, V7)), | ({Va}, {V2, V7}, {V1, V3, V4, Vs, Ve}) (4.41)

which involve 25 zero patrtial correlations while (4.19) involve 37 zerdiglacorrelations.

4.2.3 The Pairwise Markov Property

In this section, we give a pairwise Markov property which specifies itiomél independence re-
lations between pairs of variables and show that it is equivalent to thelditdo&ov property. In
previous sections, we focused on minimizing the number of zero partisdlatons. We now take
into account the size of the conditioning gein each zero partial correlatigikyz. When the size of
pas(X) for a vertexX in (RLMP,<c) is large, it might be advantageous to use ffedent conditioning
set with smaller size (if the equivalence of the Markov properties still hoREsarl and Meshkat (1999)
introduced a pairwise Markov property for DAGs (without bi-directedes) which may involve fewer
conditioning variables and thus lead to more economical tests. The resuileaasily generalized to
ADMGs with no directed mixed cycles.

Letd(X, Y) denote the shortest distance between two verticasdyY, that is, the number of edges
in the shortest path betwe&randY. Two verticesX andY are nonadjacent X andY are not connected

by a directed nor a bi-directed edge.

Definition 10 (The Pairwise Markov Property (PMP,<¢)) Let G be an ADMG without directed
mixed cycles ang. be a c-ordering on the vertices of G. A probability distribution P is said to
satisfy the pairwise Markov property for G with respect<g if for any two nonadjacent vertices

Vi,Vj,Vj <c Vi
(PMPx<c) L({Vi}, Zij, (Vi) (4.42)

where 4j-is.any-set-of vertiees such that 4-separates Mrom V; andVZ € zZ;j, d(Vi, Z) < d(V;, V).
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Note that, in ADMGs with no directed mixed cycles, there always exists sughfar any two non-
adjacent vertices. For example, the parent s&f @iways satisfies the condition fdr;. If the empty
set d-separateg from Vj, then the empty set is defined to satisfy the conditiorZfar Therefore we
can always choose 4; with the smallest size, providing a more economical way to test zero partial

correlations.

Theorem 4 If a probability distribution P satisfies the composition axiom and an ADMG Gritas

directed mixed cycles, then
(GMP) &< (PMPx). (4.43)

Proof: Noting that two verticeX andY are adjacent iX « Y, X — Y or X « Y, the proof of
Theorem 1 by Pearl and Meshkat (1999) is directly applicable to ADM@steffectively proves that
(RLMP<c) < (PMPx<c). We will not reproduce the proof here. |
As an example, for the ADM® in Figure 4.2 (a) and a c-ordering: V1 < Vo < V3 < V4 < V5 <
Vg < V7 < Vg < Vg, the following conditional independence relations (for convenience;omgbined

the relations for each vertex that have the same conditioning set) candmebyi{PMPx):

1({V2}, 0,{V1}), 1({V3}, 0, {V2}),

1({Va}, 0, {V3, V1}), 1({Vs}, 0, {Va, V2}),

I({Vs}, {Va}, {V1}), 1({Ve},0,{V3, V1)),

| ({Ve}, {Va}, {V2}), 1({V7},0,{Vs, V3, V1)),

1({V7}, {Va}, {V2}), 1 ({Va}, {Ve}, {V7, V5, Va, V2}),

1({Vs}, 0, {V3, V1}), [ ({Va}, {V2, V7}, {Ve, Va}),

[({Vo}, 0, {Vs, V3, V1}) (4.44)

which involve the same number of zero partial correlations as (4.41) boivengmaller conditioning

sets than those in (4.41).
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4.2.4 Relation to Other Work

In this section, we contrast the class of ADMGs without directed mixed cyelesximal ancestral

graphs and chain graphs in terms of Markov properties.

4.2.4.1 Maximal Ancestral Graphs

It is easy to see that an ADMG without directed mixed cyclestisaaimal ancestral graph (MAG)
(Richardson and Spirtes, 2002). An ADMG is said todpeestralif, for any edgeX < Y, X is not
an ancestor o¥ (and vice versa). Note that an ed§e«~ Y and a directed path frof to Y (or Y
to X) form a directed mixed cycle. Hence, an ADMG without directed mixed cyislemcestral. An
ancestral graph is said to beaximalif, for any pair of nonadjacent verticeéandy, there exists a set
Z c V\ {X Y} that d-separatex from Y. From Theorem 4, it follows that an ADMG without directed
mixed cycles is maximal. On the other hand, there exist MAGs which have diretied cycles (see
Figure 4.3). Thus, the class of ADMGs without directed mixed cycles is d striiclass of MAGs.

Richardson and Spirtes (2002) (pp.979) showed the following pairwes&d property for a MAG

L({Vi} ans(fVi, Vi \ Vi, Vi1 {Vj))

for any two nonadjacent verticé4 andV;. Richardson and Spirtes (2002) proved that this pairwise
Markov property implies the global Markov property assuming a Gaussieangetrization. This does
not trivially imply our results in Section 4.2.3 and our results cannot be ceresichs a special case of
the results on MAGs. The two pairwise Markov properties involve twiedint forms of conditioning
sets. The pairwise Markov property for MAGs involves considerablydaconditioning sets than our
pairwise Markov property: the conditioning set includes all ancestdavsarfidVj, which is undesirable
for our purpose of using the zero partial correlations to test a model.

Also, it should be stressed that our results do not depend on a specHimterization. We only
require the composition axiom to be satisfied. In contrast, Richardsonganes32002) consider only
Gaussian parameterizations. It requires further study whether thegaiarkov property for MAGs

can be generalized to the class of distributions satisfying the composition axiom.

www.manaraa.com



32

In the next section, we consider general ADMGs and try to eliminate redirubnditional inde-
pendence relations from (LM#,. The class of MAGs is clearly a (strict) subclass of ADMGs. Hence,
given a MAG, we have two options: either we use the result in the next semtiitne pairwise Markov
property for MAGs. Although the pairwise Markov property for MAGses fewer zero partial cor-
relations (one for each nonadjacent pair of vertices), it is possiblértisaime cases we are bettdf o
using the result in the next section (because of the cost incurred byrgfeedanditioning sets in the
pairwise Markov property for MAGs). An example of this situation will beagivin the next section.

Richardson and Spirtes (2002) also proved that for a Gaussian distnil@ncoded by a MAG all
the constraints on the distribution (that is, on the covariance matrix) are implighet lvanishing partial
correlations given by the global Markov property. Hence, this alsoshiolé linear SEM represented

by an ADMG without directed mixed cycles which is a special type of MAG.

4.2.4.2 Chain Graphs

The graph that results from replacing bi-directed edges with undiredtggken an ADMG without
directed mixed cycles is ehain graph The class of chain graphs has been studied extensively (see
Lauritzen, 1996, for a review).

Some Markov properties have been proposed for chain graphs.r$tiéirkov property for chain
graphs has been proposed by Lauritzen and Wermuth (1989) anerfbsd) (1990). Andersson et al.
(2001) have introduced another Markov property. These two Magkoperties do not correspond
to the Markov property for ADMGs. LeG be an ADMG without directed mixed cycles a@d be
the chain graph obtained by replacing bi-directed edges with undirectgx$ eth general, the set of
conditional independence relations given by the Markov propertgfisrnot equivalent to that given
by either of the two Markov properties for chain graphs. Howevergtiaee other Markov properties
for chain graphs that correspond to the Markov property for ADM@hkaut directed mixed cycles

(Cox and Wermuth, 1993; Wermuth and Cox, 2001, 2604)

“4In their terminology, ADMGs without directed mixed cycles corresponchiirc graphs with dashed arrows and dashed
edges.
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Figure 4.4 (a) An ADMG with directed mixed cycles (b) lllustration of the proce
dureGetOrdering. The modified graph after the first step is shown.

4.3 Markov Properties for General ADMGs

4.3.1 Reducing the Ordered Local Markov Property

When an ADMGG has directed mixed cycles, (RLMP), (RLMR), and (PMPx¢) are no longer
equivalent to (GMP) while (LMR) still is. In this section, we show that the number of conditional
independence relations given by (LMPfor an arbitrary ADMG that might have directed mixed cy-
cles can still be reduced. First, we introduce a lemma that gives a conditiasilci a conditional

independence relation renders another conditional independenterretaundant.

Lemma 2 Given an ADMG G, a consistent orderirgon the vertices of G and a vertex X, assume that
a probability distribution P satisfies the global Markov property fo5&_ (x\x;- Let A= preg .(X)

and A be a maximal ancestral set such thatX’ c A, A' Ndisg,(X) = disg, (X) and pag(disg,(X) \
disg,, (X)) € mb(X, A"). Then,

[({X}, mb(X, A), A\ (mb(X, A) U {X})) (4.45)

implies
[({X}, mb(X, A'), A"\ (mb(X, A") U {X})). (4.46)

We definedg < (X) to be the set of all Asatisfying this condition.
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Proof: First, we show the relationships amoAgdisg, (X), mb(X, A) andA’, disg,, (X), mb(X, A"). By

Lemma 1, we have
A" = A\ deg,(h(X, A)) (4.47)

where
h(X, A) = sps, (disc, (X)) \ (X} U mb(X, A)).

disg,, (X) and h{, A’) are subsets of dig(X). Since dig,, (X) < {X} U mb(X, A’) (by the definition of
the Markov blanket), dis, (X) N h(X, A’) = 0. Thus, we can decompose the setg{X) into 3 disjoint

subsets as follows.
disg,(X) = disg, (X) Uh(X, A)U B (4.48)

where
B = disg,(X) \ (diss, (X) U h(X, A)).

We have

A ndisg,(X) = A 0 (disg,, (X) U (X A) U B)

= diss,, (X) UB

since dig, (X) € A,B € A" andA’ n h(X,A’) = 0. From the assumption in Lemma 2 thatn

disg,(X) = disg,, (X), it follows thatB = 0. Thus, from (4.48), we have
disg,(X) \ disg,, (X) = h(X, A). (4.49)
Let T = disg,(X) \ disg,, (X) = h(X, A’). Then,

mb(X, A) = mb(X, A) UT U pas(T)

=mbX,A)UT (4.50)
since pg(T) € mb(X, A’) by our assumption. Thus A decomposes into

A=A Udeg,(T) (4.51)
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Figure 4.5 The relationship betweeh and A’ that satisfy the conditions in
Lemma 2. The induced subgra@y is shown. The vertices da
are decomposed into two disjoint subsets {&) andA'.

since de,(T) € Aand (4.47).

The key relationships amomfyg disg,,(X), mb(X, A) andA’, disg,, (X), mb(X, A’) are given by (4.49)—
(4.51). Figure 4.5 shows these relationships. We are now ready to firavi{X}, mb(X, A"), A’ \
(mb(X, A’) U {X})) can be derived fronh({X}, mb(X, A), A\ (mb(X, A) U {X})). From (4.50) and (4.51),

it follows that
A\ (Mb(X, A) U {X}) = (A" U deg,(T)) \ (Mb(X, A) U{X} U T)
SinceA’ Ndeg,(T) = 0,(MbXA)U{X) NT =0,mb(X, A) U{X} € A’ andT C deg,(T), we have
A\ (mb(X, A) U {X}) = (A \ (mb(X, A') U {X})) U (des,(T)\ T). (4.52)
Plugging (4.50) and (4.52) into (4.45), we get
1(1X}, mb(X, A) U T, (A \ (mb(X, A) U {X})) U (des,(T) \ T)).
From the decomposition axiom, it follows that

[({X}, mb(X, A) UT, A"\ (mb(X, A') U {X})). (4.53)
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The last step is to removi from the conditioning set to obtairf{X}, mb(X, A’), A’ \ (mb(X, A") U

{X})). We claim that

(T, mb(X, A'), A"\ (mb(X, A") U {X})).

(4.54)

We first argue that is d-separated frorA’ \ (mb(X, A") U{X}) given mb{X, A’). Consider a verteke T

and a vertexr € A\ (mb(X, A’) U {X}). Note that for any bi-directed edge- B in Ga, S is either inT

or disg,, (X). There are only four possible cases for any patGirfromt to .

lLte—y -«
ot rofeya

In case 1y € mb(X, A") since pg(T) € mb(X, A’). Thus, the path is not d-connecting. In casg 5

a descendant df Since mbX, A") does not contain any descendant,ahe path is not d-connecting.

Case 3 is similar to case 1, but there are one or more bi-directed edget aftex either inT or

disg,, (X). It follows thaty € mb(X, A’), so the path is not d-connecting. Case 4 is similar to case 2, but

there are one or more bi-directed edges &ftéf 6 is in T, the argument for case 2 can be applied. If

d is in disg,, (X), thens € mb(X, A’), which implies that the path is not d-connecting. This establishes

thatT is d-separated from’ \ (mb(X, A’) U{X}) given mb{, A"). By the assumption thd& satisfies the

global Markov property foGpre; _(x)\(x}, (4.54) holds. Finally, from (4.53),(4.54) and the contraction

axiom, it follows thatl ({X}, mb(X, A"), A’ \ (mb(X, A") U {X})).

For example, consider the ADMG in Figure 4.1 and a consistent orderikfg < V> < V3 <

V4 < V5 < Vg < V7. Assume that the global Markov property f@E)reb,<(Ve) is satisfied . LetA =

{V1,V2,V3, V4, Vs, V6, V7} and A" = {V1, V2, V3, V4, V6, V7). Then,
disg,(V7) = {Vs, Ve, V7}

disg,, (V7) = {Ve, V7}

A’ N dis,(V7) = {Ve, V7} = disg,, (V7)

pag(disc,(V7) \ disg,, (V7)) = {Va} C {Va, Va4, V6} = mb(V7, A).

(4.55)
(4.56)
(4.57)

(4.58)
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Thus, by Lemma 2| ({V7}, {Vs, Va4, Ve}, {V1, V2}) can be derived by({V7}, {V3, Va4, Vs, V}, {V1, V2}).
Note that in the proof of Lemma 2, the compaosition axiom is not used. Thus, Lehwaa be used to
reduce the ordered local Markov property for ADMGs associated witarhitrary probability distri-
bution.

We now introduce a key concept in eliminating redundant conditional indkpee relations from

(LMP,<).

Definition 11 (C-ordered Vertex) Given a consistent ordering on the vertices of an ADMG G, a

vertex X is said to be c-ordered +if
1. all vertices indisg(X) N pre; _(X) are consecutive ir and
2. for any two vertices Y and Z iiisg(X) N pres < (X), there is no directed edge between Y and Z.

For example, consider the ADMG in Figure 4.4 (a)<: V1 < V2 < V3 < V4 < V5 < Vg < V7 <
Vg < Vg is a consistent ordering on the vertices&f Vi, V>, ..., Vg are c-ordered i but Vg is not
sinceVs andVg are not consecutive iR.

The key observation, which will be proved, is that c-ordered vertioagibute to eliminating many
redundant conditional independence relations invoked by the ortmraldMarkov property (LMK).
We provide two procedures. The first proced&®educeMarkov in Figure 4.6 constructs a list of
conditional independence relations in which some redundant conditiaregémdence relations from
(LMP,<) are not included ReduceMarkov takes as input a fixed ordering The second procedure
GetOrdering in Figure 4.8 gives a good ordering that might have many c-orderede®rtic

We first describe the proceduReduceMarkov. Given an ADMGG and a consistent ordering
ReduceMarkov gives a set of conditional independence relations which will be showa égjbivalent
to the global Markov property fdg. For each verte¥,;, ReduceMarkov generates a set of conditional
independence relations. W is c-ordered, the relations that correspond to the pairwise Markowv prop
erty are generated. Otherwise, the relations that correspond to theaitdeal Markov property are

generated. Also, Lemma 2 is used to remove some redundant relationss(bfvi)d. The output
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procedure ReduceMarkov
INPUT: An ADMG G and a consistent orderingon the vertices o6
OUTPUT: A set of conditional independence relatidhs
S«¥0
fori=1,...,ndo
li <0
if Vjis c-ordered ir then
for Vj <V do
li « i UI({Vi}, Zj,{V;}) whereZ; is any set of vertices such tha} d-separates
V; from Vi andvZ € Zij, d\vi, 2) < d(Vi,Vj)
end for
else
for all maximal ancestral sefssuch thaV; € A C pre; _(Vi), A ¢ rdg <(Vj) do
li — L UT({Vi}, mb(Vi, A), A\ (mb(Vi, A) U {Vi}))
end for
end if
S« SUl;
end for

Figure 4.6 A procedure to generate a reduced set of conditional indepee
relations for an ADMGG and a consistent ordering

S = ReduceMarkov(G, <) can be described as follows:

s= U (U 1xzem)

X:Xis c-ordered ik Y:Y<X

[({X}, mb(X, A), A\ (mb(X,A) U {X}))) (4.59)

X:X is not c-ordered ik all maximal set\:
XeAcpreg L(X),
A¢rdg <(X)

whereZyy is any set of vertices such thagy d-separateX from Y andVZ € Zxy, d(X, Z) < d(X,Y).

If a vertex X is c-orderedO(n) conditional independence relations (or zero partial correlations)
are added t&. Otherwise O(2") conditional independence relations may be added &amd O(n2")
zero partial correlations may be invoked. Furthermore, a c-ordemekvypically involves a smaller
conditioning set.l ({X}, Zxy, {Y}) has the conditioning sé¢Zxy| < |pag(X)| while 1({X}, mb(X; A), A\
(mb(X, A) U {X})) has the conditioning s¢nb(X, A)| > |pas(X)I.

We now prove that the conditional independence relations producBeédyceMarkov can derive

all the conditional independence relations invoked by the global Markapgpty.

Definition:d2+(S-Markev,Preperty ( S-MP,<)) Let G be an ADMG ané be a consistent ordering on
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the vertices of G. Let S be the set of conditional independence relati@rslyyReduceMarkov(G <).

A probability distribution P is said to satisfy the S-Markov property for G with ee$po<, if

(S-MP,<) P satisfies all the conditional independence relations.in S (4.60)

Theorem 5 Let G be an ADMG ané be a consistent ordering on the vertices of G. Let S be the set
of conditional independence relations given ReduceMarkov(G,<). If a probability distribution P

satisfies the composition axiom, then
(GMP) < (S-MP<). (4.61)

Proof: (GMP) = (S-MP<) since every conditional independence relationSAP,<) corresponds
to a valid d-separation. We sho8-{MP,<) = (GMP). Without any loss of generality, let Vi <

. < Vh. The proof is by induction on the sequence of ordered vertices. Sepbat §-MP<)
= (GMP) holds forV4,...Vij_1. LetSj_1 = I1 U ... U lji_1. Then, by the induction hypothesis,
Si_1 contains all the conditional independence relations invoked by (kM®er Vi,...Vi_1. If Vi is
not c-ordered|; = 1({Vi}, mb(V;, A), A\ (mb(Vi, A) U {V;})) for all maximal ancestral sets such that
Vi € A C pres . (Vi), A ¢ rdg <(Vi). The conditional independence relations invoked by (LWRyith
respect tov; and anyA e rdg <(V;) can be derived from other conditional independence relations by
Lemma 2. ThusS; = Sj_1 U; contains all the conditional independence relations invoked by (kMP,
for Vq,...V;, which implies (GMP). 11V, is c-ordered, applying the arguments in the proof of (GMP)

— (PMPx), we have

[({Vi}, pas(Vi), pres < (Vi) \ ({Vi} U pag (Vi) U sps(Vh)))- (4.62)
By the induction hypothesis and the definition of a c-ordered vertex, we foa all V; € disg(Vi) N

preg (Vi)
L({Vi} pas(V)), pres <(V)) \ (Vi U pas(V)) U sps(V))))- (4.63)

By the arguments in the proof of (GMR}= (RLMP<.), we have for all maximal ancestral s&s

such that; € A C pre; _(Vi)

I({Vi}, mb(Vi, A), A\ (mb(Vi, A) U {Vi})). (4.64)
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v, ViV

Figure 4.7 The c-componef¥1, V2, V3, V4} has the root sgiv1, Vo}

Therefore S; = Sj_1 U |; derives all the conditional independence relations invoked by (GMP).m
As we have seen earlier, the number of zero partial correlations criticggrils on the number of
c-ordered vertices in a given ordering. This motivates us to find theiagd@ith the most c-ordered
vertices. An obvious way of finding this ordering is to explore the spaedl tie consistent orderings.
However, this exhaustive search may become infeasible as the numheetioés grows. We propose
a greedy algorithm to get an ordering that has a large number of ceardertices. The basic idea
is to first find a large c-component in which many vertices can be c-atdmnd place the vertices
consecutively in the ordering, then repeating this until we cannot find af sertices that can be c-
ordered. To describe the algorithm, we define the following notion, whiattiitks the largest subset

of a c-component that can be c-ordered.

Definition 13 (Root Set)The root set of a c-component C, denoté@) is defined to be the sV,

C|thereis no Y € C such that a directed path;\/» ... — V; exists in G.

For example, the c-componefM;, V2, V3, V4} in Figure 4.7 has the root sé¥1, V,}. V3 andV, are
not in the root set since there are paths— V3 andV; —» W — V4. The root set has the following

properties.

Proposition 3 Let < be a consistent ordering on the vertices of an ADMG G and C be a c-amenpo

of G. If the vertices imt(C) are consecutive ir, then all the vertices int(C) are c-ordered ir<.

Proposition 4 Let< be a consistent ordering on the vertices of an ADMG G and C be a c-azenpo

of G. Ifavertex X in C is c-ordered ir, then Xe rt(C).

Proposition 3 and 4 imply that the root set of a c-component is the largesetsaf the c-component

that.:can;be,c-orderediinasconsistent orderings tfoes not have directed mixed cyclesCitE C for
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procedure GetOrdering
INPUT: An ADMG G
OUTPUT: A consistent ordering onV
Step 1:
G «G
while (there is a c-componeft of G’ such thatrt(C)| > 1) do

M0

for each c-componer@ of G’ do

if [rt(C)| > M| then
M « rt(C)
end if

end for

Add a vertexVVy to G/ AM

Draw an edgd/yy < X (respectivelWy — X, Vy < X) if there is

Y « X (respectively¥ — X, Y « X)in G’ such thaty e M, X € V’

Let G’ be the resulting graph
end while
Step 2:
Let <’ be any consistent ordering &1i. Construct a consistent orderirgfrom <’ by replacing each
Vs € V' \ V with the vertices irs (the ordering of the vertices i@ is arbitrary)

Figure 4.8 A greedy algorithm to generate a good consistent orderinggomth
tices of an ADMGG

every c-componer€.

The proceduré&etOrdering in Figure 4.8 is our proposed greedy algorithm that generates a good
consistent ordering foi. In Step 1, it searches for the largest root Betand then merges all the
vertices inM to one vertexVyy modifying edges accordingly. Then, it repeats the same operation for
the modified graph until there is no root set that contains more than one.v&itece the vertices in
a root set are merged at each iteration, the modified graph is acyclic awisthéhere would be a
directed path between two vertices in the root set, which contradicts thé&ioaraf a root set. After

Step 1, we can easily obtain a consistent ordering for the original graphthe modified graph.

4.3.2 An Example

In this section, we show the application of the procediReduceMarkov and GetOrdering by
considering the ADMGG in Figure 4.4 (a). First, we appi@etOrdering to get a consistent ordering

ontheverticed,of,GalnStep 1, we first look for the largest root set. The c-compof\éniz, Vs} has
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the largest root s\, V7, Vg}. Then, the vertices ifVg, V7, Vg} is merged into a verteXgzs. Figure
4.4 (b) shows the modified gra@i after the first iteration of the while loop. In the next iteration, we
find that every c-component has the root set of size 1. Note th& fer{Vs, Vg}, rt(C) = {Vs, Vo}
in G but rt(C) = {Vs} in G’. Thus, Step 1 ends. In Step 2, frag in Figure 4.4 (b), we can obtain
an ordering<’: V1 < Vo < V3 < V4 < V5 < V78 < Vg. This is converted to a consistent ordering
<:V1<Vo<V3<Vy<V5<Vg<V7<Vg<VgforG.

With the ordering<, we now applyReduceMarkov to obtain a set of conditional independence
relations that can derive those invoked by the global Markov propit/easy to see that the vertices
V1,...,Vgare c-ordered ir. Thus, the following conditional independence relations corresportding

the pairwise Markov property are added to theSénitially empty).

1({V2}, 0, {V1}), 1({Va}, 0,{V2}),

1({Va}, 0, {V3, V1}), |({Vs},0,{Va, V3, V2, V1}),

1({Ve}, 0, {Vs, Va, V2}), I({Ve}, {V3}, {V1}),

1({V7}, 0, {Vs, V4, V2}), L({V7} (V3}, {Va)),

1({Va}, 0, {Vs, V3, V1}), I({Va}, {Va}, {V2}). (4.65)

Vg is not c-ordered irk sinceVs is not adjacent irk. Thus, we use the ordered local Markov property

(LMP,<) for V. The maximal ancestral sets that we need to consider are

A1 = ans({Ve, Vs, Vo}) = {V1, V2, V3, V4, Vs, Vg, V7, Vg, Vo) and (4.66)

Az = ans({Va, Ve, Vo}) = {V1, V2, V3, V4, Vg, V7, Vol (4.67)
The corresponding conditional independence relations are

| ({Va}, {V7}, {V6, V4, V3, V2, V1 }). (4.69)

However, it turns out tha#, € rdg <(Vg) and (4.69) is not added t8. Let's check the condition of
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Lemma 2. The global Markov property f@pre, _(vs) is Satisfied by (4.65). Also,

diss,, (Vo) = {Vs, Vo) (4.70)

diss,, (Ve) = (Vo) (4.72)

Az N diss,, (Vo) = (Vo) = diss,, (Vo) (4.72)

pag(diss,, (Vo) \ diss,, (Ve)) = 0 € {V7} = mb(Va, Ay). (4.73)

Therefore, the condition of Lemma 2 is satisfied and it follows that (4.69)dsnmaant. To see how
much we reduced the testing requirements, the conditional independ&@imnseinvoked by (LMR)

are shown below.

1({V2}, 0, {V1)}), I({Va}, (1}, {V2)),

| ({Va}, {V2}, {V3, V1)), 1 ({Vs}, 0,{Va, V3, V2, V1}),

I ({Ve}. {Va}, {V5, Va, V2, V1}), I ({V7}, {Va}, {V5, Va, V2, V1)),

I ({V7}, {Ve, V3}, {Vs5, Va, V2, V1)), 1 ({Vs}, {Vs, Va}, {Ve, V3, V2, V1}),

1 ({Vs}, {V7, V5, Va, V3, {V2, V1)), | ({Vs}, {V7, V6, V5, Va, V3}, {V2, V1)),

1({Va}, {V7}, {Ve, Va, V3, V2, V1)), | ({Ve}, {V7, Vs, {Vs, Ve, Va, V3, V2, V1}). (4.74)

S invokes 26 zero partial correlations while (LM#,invokes 39. Also,S involves much smaller
conditioning sets. We have at most one vertex in each conditioning set &) @@ two vertices in
(4.68) while 23 zero partial correlations in (4.74) involve more than 2 verfitéhe conditioning set.
The ADMG G in this example turns out to be a MAG. As we discussed in Sectioh.4,2ve have
two options: either we use the constraints in (4.65) and (4.68) or the ciostgaven by the pair-
wise Markov property for MAGs. In this example, both sets of constraimsive the same number
of zero partial correlations. However, the pairwise Markov propestyMAGs involves much larger
conditioning sets. For example, the pairwise Markov property for MAGsgthe following condi-
tional independence relation for the p¥ andVg: 1({Vs}, {Vs, Va, V3, Va2, V1}, {V6}). Our method uses
an empty set as the conditioning set for the pair. Hence, in this example ewaetier & using the

constraints in (4.65) and (4.68).
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4.3.3 Comparison of (LMPx) and (S-MP,<)

From (4.59), itis clear tha§-MP,<) invokes less conditional independence relations than (kMP,
if there are c-ordered vertices #1 But how much more economical iIS{MP,<) than (LMPx<) and for
what type of graphs is the reduction large?

For simplicity, we will compare the number of conditional independence rekatather than zero
partial correlations and ignore the reduction done by Lemma 2. For nawnass

s= |J 10X pas(X). pres<(¥)\ (1X1 U pag(X) U sps (X)) |

X:Xis c-ordered ir<

(- J  1ax,mbx A), A\ (mb(X, A) U (X))

X:Xis not c-ordered ik all maximal setsA:
XeAcpreg L (X)

Let M(X, <) be the number of dierent Markov blankets of a verték that is, MX, <) = ‘{disGA(X) | A
is an ancestral set such thate A C preG’<(X)}|, and Ck) be the set of vertices that are c-ordered in
<. Then, (LMPR) lists Y xcv M(X, <) conditional independence relations aigNIP,<) lists |C(<)| +
2 xgc<) M(X, <) conditional independence relations. Hence, tifiecknce in the number of conditional
independence relations between (LMPand G-MP,<) is
> (M(X<)-1).

XeC(<)
This difference is large whe€(<)| or M(X, <) for eachX is large.

The size of C&) depends on the number of directed mixed cycles. From Definition 11, itfsllo
that C) is large if there are a small number of directed mixed cycles. Note that aetiragxed cycle
such as that in Figure 4.3 induces the violation of the first condition in Definitioand a directed
mixed cycle of the formx S g induces the violation of the second condition in Definition 11.

M(X, <) depends on the structure of @(X) N pre; - (X). We will reformulate M, <) to show the
properties thatffiect M(X, <). Let Go, qis(X, <) = (V’,E’) whereV’ = disg(X) N pre; - (X) andE’ =
{Vi & V|V, & VinGy}. For example, for an ADMGs in Figure 4.7 and an ordering, < Vo <
V3 < V4, Go, dis(V3, <) iIs V1 & Vo & V3. Let G, gis(X, <)s be the induced subgraph 6L, gis(X, <)
on asetS C disg(X) N pres < (X). Then, MK, <) = |{S | S ¢ disg(X) N preg < (X) such thaG,, gis(X, <

)s is aconnected componeat G, gis(X, <)su(ans(s)ndiss(X)npres .(x)}|» that is, M, <) corresponds to
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a set of subsets of disg(X) N pres (X) satisfying two conditions: (i%5. qis(X, <)s is connected; and
(ii) for all Y € (art;(S) N disg(X) N preG,<(X)) \ S, there is no path fronY to any vertices ir5. The
condition (i) implies that MK, <) will be large if the vertices in dis(X) N pre; _(X) are connected by
many bi-directed edges. The condition (ii) implies thatdyK) will be large if there are few directed
mixed cycles. Note that for ADMGs without directed mixed cycles, (ii) trivialbjds since(arG(S) N
disg(X) N preGK(X)) \'S = 0. For example, consider a subset of verti¢és ..., V} in an ADMG
with edgesV, « Vi, i = 1,...,k =1, which has no directed mixed cycles. Then, for an ordering
Vi < ... < Vg, M(Vg, <) = 2k-1 " Also, consider a subset of verticgé, ..., Vi) in an ADMG with
edgesvis S Vo 3 -+ SV, which hask — 1 directed mixed cycles. Then, M{, <) = 1. Hence, itis

clear that M, <) is large if
1. the set dig(X) N preg - (X) is large,
2. there are many bi-directed edges connecting vertices gxlis) pre; - (X), and
3. there are few directed mixed cycles.

Thus, (LMPx) will invoke a large number of conditional independence relations for BM&
with few directed mixed cycles and large c-components with many bi-directgeisedHowever, for
such an ADMG Y xcc() (M(X. <) - 1), the reduction made byS(MP<), is also large. An extreme
case is an ADMG that has no directed mixed cycles and each c-compdivelmith is a clique joined
by bi-directed edges. An example of such an ADMG is given in Figure 4d@.tliis ADMG and an
orderingWW < V < X <Y < Z, (LMP,<) invokes MW, <) + M(V, <) + M(X, <) + M(Y, <) + M(Z, <
)=1+1+1+ 2+ 4 =9 conditional independence relations whi&¥P,<) invokes|C(<)] =n=5
conditional independence relations. If we enlarge the clique joined birdstdd edges such that it
containsk vertices, then (LMR) invokes 2+ Zi"z‘l 2 = 1 + 2X conditional independence relations
while (S-MP,<) invokesk + 2.

In general, althoughS-MP,<) greatly reduces (LMR), it may still invoke an exponential number

of conditional independence relations if there exist directed mixed cycles.
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Figure 4.9 An example ADMG for which usings{MP,<) is most beneficial.
There is no directed mixed cycle and each c-component is a clique
joined by bi-directed edges.
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CHAPTER 5. POLYNOMIAL CONSTRAINTS IN CAUSAL BAYESIAN
NETWORKS

In this chapter, we seek the constraints imposed by a causal BN on bakpsrimental and inter-
ventional distributions. When all variables are observed, a completaatbdaration of constraints on
interventional distributions imposed by a given causal BN has been giV@earl, 2000, pp.23-4). In
a causal BN containing hidden variables, a class of equality and inequatisyraints on interventional
distributions are given in Kang and Tian (2006). In this chapter, weqs®po use the implicitization
procedure to generate polynomial constraints on interventional distrisutioluced by a causal BN

with hidden variables. The main challenges in applying the implicitization proeemiumterventional

distributions are:

(i) Computational complexityThe generic complexity of implicitization is known to be exponen-
tial in the number of variables (number of parameters for this problem). Wleenonsider
interventional distributions, the number of variables greatly increasesaraahpo the case of

non-experimental distribution, which makes the computation infeasible evesnfall causal

BNs.

(i) Understanding structures of constraint§inding a syntactic structure of the constraints com-

puted by implicitization also becomes complicated.

To deal with challenge (i), we show three methods to reduce the complexitg whiiicitization prob-
lem (Section 5.3). We illustrate our methods showing a model in which the gamgglicitization
procedure is intractable while our methods can solve the problem (Secti@y 3\& also show an ex-
ample of new constraints on interventional distributions that are not caidyrine types of constraints
in Kang and Tian (2006) (Section 5.3.2). To deal with challenge (ii), weegresome preliminary re-

sultspensthejalgebraiesstructure of polynomial constraints on interventiortabdifons implied by
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certain classes of causal BNs with hidden variables (Section 5.3.2). MWessime preliminary results
in causal BNs without hidden variables, which are expected to be usetulderstanding syntactic
structures of the constraints for BNs with hidden variables (Section 5.2).

We provide a model testing procedure using polynomial constraints asdrgreome experiments
validating this procedure (Section 5.4). We also discuss a possibility of psilggomial constraints

to differentiate Markov equivalent models (Section 5.4).

5.1 Problem Statement

We define themplicitizationproblem for a set of interventional distributions. We explain what the
polynomial constraints computed by the implicitization problem mean algebraically.

Let Pintv denote a set of interventional distributions. For exampBigy={P(v1, 2), Pv,=1(V1 =
1, )} contains a non-experimental distributiB(v, v2) and an interventional distributidy, -1 (V1 =
1,v,) where the treatment variab, is fixed to 1. We will regardP(v) to be a special interven-
tional distribution wherel = 0 allowing it to be inPj,,. Let P, denote the set of all interven-
tional distributionsP, = {Py(v)IT c V,t € Dm(T),v € Dm(V), vis consistent witti} where Dm(T)
represents the domain @f. For example, lev = {V1,V>} where both variables are binary, then
P. = {P(v1,V2), Py,=1(V1 = 1, v2), Py,—2(V1 = 2,V2), Py,=1(v1, V2 = 1), Py,=2(v1, V2 = 2)}.

We can describPBjy, in terms of a polynomial mapping from a set of parameters to the distributions
as follows.

First, consider a causal B8 without hidden variables. Léf,...,V, be the vertices os. We
denote the joint space parameter definffy) for v consistent wittt by p!, and the model parameter
defining P(vi|pg) by q{,i pa- 1he model parameters are subjected to the linear relaﬂgirtiﬁ,ipa =1.
Thus, we have introduced;- 1) [T;jv,cpa) dj model parameters for the vertexwhered; = [Dm(Vi)|.

Let Jp,,, denote the set of joint space parameters associatedPyitrend M denote the set of model
parameters. For example, consider the causaGBNFigure 5.1 (a) in which variables are binary. Let
Pintv be the set of two distributiond(v1, vz, v3), Pv;=1(V1 = 1,v2,V3)}. Then,Jp,,={pP111, P112 P121,

Vi=1 . V1=1 _V;=1 V=1 _ 1 1 2 2 3 i
P122, P211, P212, P221, P222: P117 > Pr1p » P11 » P13 } @ndM = {0y, 015, G745 70 07} The mapping re-
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lated to (3.5) is

o RM - R‘]Pintv,
pE/ = 1—[ qivi pa (5.1)
{ilVigT}

whereRM andR v denote the real vector space of dimengMhand|Jp, . | respectively. For example,

the mapping for the previous example is given by the following relationships:

P111= Qh(ﬁl(ﬁ,
P112 = Ap,07,(1 - ),
P121 = Gy (1 - 6f,)a,
P22 = Opp(1 — A5)(1 - ay).
P11 = (1 - O1;)07,03,
P12 = (1 - Ap)af,(1 - GY),
P21 = (1 - ag;)(1 - 9f))cs,
P22 = (1 - Ap)(1 - 0F,)(1 - ).
Prir = Oic,
Plip = Gl - ),
Pyt = (- 6,

Py = (1- )1 -a)).
(5.1) induces a ring homomorphism
@ :R[Jp,,] —» R[M] (5.2)

which takes the unknowp}, to [Tivet) Gy pa -

Second, consider a causal BNwith hidden variables. LetVvy,...,V,) and{U4,...,Uy} be sets
of observed and hidden variables respectively. We denote the joiot grEmameters defining;(v)
for v consistent witht by pl, and the model parameters definiRgy|pa;, u') and P(u;) by qi/i pau and
rLjJi respectively.. The joint. space parameters and the model parameterssMommgs of polynomials
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g /N

Vi v,

(a) (®)

Figure 5.1 Two causal BNs.

R[Jp,,,] andR[M]. The mapping related to (3.7) is

m:RM — RPin,

n

Pl = Z l—[ qi/ipauil_[rtj‘i' (5-3)

Ur...Uy {ilVigT}) j=1

(5.3) induces a ring homomorphism
¥ : R[Jp,,,] - R[M]. (5.4)

By Tarski-Seidenberg theorem, the imagepdfor ) corresponds to a semi-algebraic set, which
can be described by a set of polynomial equalities and inequalities. Findiofglzese equalities and
inequalities is usually infeasible. In this chapter, we choose to find a setiyigmial equalities that
define the smallest algebraic set that contains the image(@f r). These polynomial equalities are
a subset of the constraints that describe the image (of ) and are equal to thieernelof the ring
homomorphismb (or ¥). Thekernelof ®, denoted by kem®) is the ideal consisting of all polynomials
f in R[Jp,, ] such thatd(f) = 0. Thus, the vanishing of the polynomial equalities in #grand
ker(¥) is a necessary condition that there exist the model parameters in (5.13.8hdespectively.
The process of computing kdr] is calledimplicitization

Our goal is to compute and analyze the kernels for causal BNs with or witladen variables.

5.2 Causal Bayesian Network with No Hidden Variables

Consider a causal Bi& and a set of interventional distributioRs,,. If checking whether each

Pi(v)resPintafactorssas:ing3:5) is the only goal, it is not necessary to solve the implicitizataigm
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since you can use the constraints (3.5) given by the definition or the abnstgiven in (Pearl, 2000,
pp.23-4). However, we study the implicitization problem for a set of intdreaal distributions asso-
ciated with a causal BN without hidden variables, since we expect thatrtietuse of the constraints
for a causal BN without hidden variables may reveal some syntactic steugtiwhe constraints for a
causal BN with hidden variables. For non-experimental distribution, i@atcal. (2005) showed that
the constraints for a BN without hidden variables can help finding the steuofuihe constraints for a
BN with hidden variables.

Since the computation of the constraints for causal BNs without hidderblesis relatively easy,
we will focus on the analysis of the computed constraints. In this sectioniveeagreliminary result
on the algebraic structure of the constraints for a set of intervention@ibdisons associated with
causal BNs without hidden variables. The problem of characterizingttheture of the constraints for
arbitrary set of interventional distributions is still open. We show a fewes#s which the constraints

can be nicely described by a simple set of polynomials.

5.2.1 One Interventional Distribution

Suppos#;n, contains only one interventional distributi®(v). For non-experimental distribution

P(v), Garcia et al. (2005) showed that

ker@) = (locai@)  P™) + () Py —1) (5.5)

whereliocag) is the ideal associated to the local Markov property on a@Bihdp is the product of

all linear formsps_4v,,;.v, = Z Pvivevessve @ndl 2 % = {g € R[Jpwy] | gfN e I, for someN}

V1
denotes theaturationof | by f.

The local Markov property o is the set of independence statements
localG) = {V; 1L ND(V)IPA(V}) :i=1,...,n} (5.6)

where NDY;) denotes the set of nondescendantsjah G and PAY,) denotes the set of parents\gf
in G.
For example, consider the causal BNin Figure 5.1 (a). Assume that all variables are binary.

ThedocalMarkovsproperty,0G6 has only one element; 1L V» | V3. The constraints induced by an
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independence statemeAt,lL B | C are given by the vanishing of the polynomials

PA=a,B=b,C=c)P(A=a,B=b",C=0¢)

-P(A=a,B=hb,C=c)P(A=a,B=b,C=¢) (5.7)
foralla, &, b, b, c. Thus, the idealjocaic) associated with the local Markov property Gris

local@) = (P111P221 — P121P211, P112P222 — P122P212). (5.8)

For this particular BNG, it turns out that

localG) - P™ =liocal@) - (P111- .- P222P+11- - - P+22P++1P++2)"

=liocalG)- (5.9)

From (5.5), it follows that

ker@) = liocaig) + () oy = 1). (5.10)

In general, however, keb) does not coincide witlyocac). For example)iocaig) - P~ for the causal
BN G in Figure 5.1 (b) includes additional generators other thaagc). See Sturmfels (2002); Garcia
et al. (2005) for details.

The above result can be applied to an arbitrary interventional distrib&i). We see that the
mapping in (5.1) defined fd?;(v) andG is equivalent to the mapping defined v \ t) andG(V \ T)

whereG(C) denotes the subgraph Gfcomposed only of the variables@ Thus, the following holds.
Proposition 5 Let® be a ring homomorphism

O : R[Jp,vy] — R[M] (5.11)
induced by (5.1). Then, we have

ker@) = (liocaicviy : P°) + () B - 1) (5.12)
W\t

wherep is the product of all linear formp+m+\,ir+lmv.

) whenV\T = {Vi,...,Vi},Viy > ... > V,.
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5.2.2 All Interventional Distributions

Consider the set of all interventional distributidds For any joint space parametgy, we have

o= ] dipa= [ oV (5.13)

{ilVigT} {ilVigT}

Thus, every joint space parameter can be written as the product of shergaint space parameters.
Then,

ker@) =¢py— [ | o :vwb). (5.14)
{ilVigT}

5.2.3 Two Interventional Distributions

Consider the case in whidP, has two distributions. We show some cases in whichdec@én
be described by a simple set of polynomials.
Consider the causal BI& in Figure 5.1 (a) where all variables are binary. SuppBgg =

{P(v), Py,=1(v)}. We have the following relation betweepflﬁzz\é andpy. For anyv, andvs,

p\ll\i:vi = Z Puvovs- (5.15)
Vi
Let @ denote a ring homomorphism
© : R[Jpw),Py,a(vavan] = R[M]. (5.16)

Since the joint space parametef@:é for anyv, andvs is a polynomial function of some of joint

space parametefs, we have
ker(@) = ker(@’) + <p\1/¢;é - Z Pvivovs & YV2, V3) (5.17)
v
whered’ denotes the ring homomorphism 1
O’ : R[Jpwy] — R[M]. (5.18)
From (5.10), it follows that
ker@) =liocaie) + () By = 1) + (Prine = > Prawovs © ¥V2, V). (5.19)
v Vi

Note that the equation in (5.15) holds because th¢\se¥/3} contains its own ancestors & We

have the following proposition.
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Proposition 6 SupposdRy = {P(v), Py(V)}. Let® and®’ be ring homomorphisms
@ : R[Jip)pvp] = RIM], @ 1 R[Jipiy] — R[M]. (5.20)
If V\ T contains its own ancestors in G, we have
ker(@) = ker@") + (p, = > py: V(vV\1)). (5.21)
t

The relationship between two distributions in the above proposition is the odsidtnma 5 in Section
5.3.

Now consider the causal B8 in Figure 5.1 (a) and suppose tit, = {P(V), Py,=1(V)}. In this
case,Py,=1(Vv) cannot be represented as a polynomial functioR@®). However, we can describe the
generators of kedf) as follows. Given an instantiation of all the variableand an instantiation of
treatment variablet let Vons = {V; € V\ T | Vipg in vis consistent with} and consy, t) denote the
instantiation oV obtained by replacing the inconsistent variablegith the values of. For example,
for Gin Figure 5.1 (a), ifv = (V1 = L,V = 1,V3 = 1) andt = (V, = 2), thenVons = {V1, V3} and

consg, t) = (V1 = 1,V = 2,V3 = 1). We have the following lemma.
Lemma 3 SupposéRy = {P(V), Pi(V)}. Let®, & and®” be ring homomorphisms
® : R[Jpw.pwy] = RIM], @7 1 R[Jjpy] = R[M], @7 : R[Jpyy] — R[M]. (5.22)
If for any two vertices Vand V; in V\ T, V; is neither \{’s ancestor nor its descendent, then
(i) there exist two disjoint subsets|\# {Ag, ..., A} and W = {C4,...,Cy} of T such that
AL>...>A>B1>...>Bj>Cy1>...>C (5.23)
is a consistent topological ordering of variables in G wherg V= {By,..., Bj} and
(ii)

ker(@) =ker(@’) + ker@”’) + (f (v, t) Z Py — Z Py : YV) (5.24)

W1,Veons

where

tw= [ D) Prongun (5.25)

{ilVi€Vcond Veons\Vi
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Proof: We define the idedl associated witld.

| = (p\,—nq{,ipa_ LYV + (pl — 1_[ Qypa YV \ D). (5.26)

{ilVigT}

The elimination ideal N R[Jpw),p,(v] iS equivalent to kex). The idea is that we can represerds
the sum of three idedl, |, andl3 such that the model parameterd jrand those ir, are disjoint and

no model parameter appeard jrand thus

ker@) =I NR[Jpw).pw)]
=1 N R[J{p(v)}] + 1N R[J{PI(V)}] +13
=ker(®") + ker(@") + I3. (5.27)
Letly = (pv — [Ti G pa : YV @andlz = (p}, = TTjiver) Bypa : V(v \ 1)). We will replace each generator

in 11 with two other polynomials and add one polynomial4avhich is initially empty as follows.

For any polynomiapy, — [T; i, p3. We have

o= [ ] lipa (5.28)
i
= pv—( l_[ Qi/ipa-)( n Qi/ipa)( l_l qi/ipa-)
{ilVieW,} {ilVieV\T} {ilVieW,)
=pv - l_[ qi/ipaa)(z p) (5.29)
{ilVieW} Wy
since
2. ( _ [] dial ' [ cipa)
W1 {ilVieV\T} {i|V;eWs}
isinl. Also,

%pV‘( [1 dipa)( [] dipa)

{ilVieV\T} {iIVieW,)
= Z Pv - ( 1_[ qiwpa)( 1_[ o, pa)( l—l o, pa)
Wy {ilVieVcong {iIVie(V\T)\Vcong {iIVieW,}

From the property that any two verticésandV; in V \ T, V; is neitherVj’s ancestor nor its parent, it

follows that the polynomial

Z p"_( l_[ qi\/ipa)( n qivipa) (5.30)

Wi,Veons {iIVie(V\T)\Vcond {iIVieWa}
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isinl. Thus,
va—(,l—[ qi/ipa)(_n Qi/ipa)zzp"_(, [T diad 2. »)
Wy {iIVieV\T} {iIVieWs) Wy {ilVieVeond W1,Veons
=2 ([ 2 Plongu)( 2 &) (531)
w1 {ilVi€Vcong Veons\Vi W1,Vcons

We replace the polynomial (5.28) with the polynomials (5.29) and (5.30) ashthagolynomial (5.31)
tol3. After processing every polynomial In, we have three ide#{, |, andls with the desired property.
u

We can use Lemma 3 to compute key(for the causal BNG in Figure 5.1 (a) andPjy =
{P(v), Pv,=1(V)} sinceV, is neitherVz's ancestor nor its descendent. It turns out that

ker(@) =ker@’) + ker@") + (P53 > Puvo1 = Puwd : YW1, Va)

V1,V2

=liocal) + (Z Pv = 1) + locaiG(vaVa)) + (Z e -1
\"

V1,V2

T D Puet = Pt £ VL V). (5.32)

V1,V2

5.3 Causal Bayesian Network with Hidden Variables

Solving the implicitization problem for a causal BN with hidden variables hastadagiputational
demand. The implicitization problem can be solved by computing a certain Gepbbsis and it is
known that computing a Groebner basis has the generic compte®Bg°™N) wheremis the number
of equationsg is the degree of the polynomials aNds the number of variables. In our implicitization
problems,N is the sum of the number of joint space parameters and model parametarsidézo
the implicitization for non-experimental distribution. The number of joint spacamaters for non-
experimental distribution id; ...d,. Solving the implicitization problem becomes intractable as the
number of vertices in the causal BN and the domains of variables incrélmse.consider the cases
in which we have a set of interventional distributions. The number of joiatsgparameters fd?,
isdi...dn(ds...dq — 1). This greatly increases the complexity of the already hard problem. In this

section, we show three methods to reduce the complexity of our implicitizatiotepnob
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5.3.1 Two-step Method

Garcia et al. (2005) proposed a two-step method to comput®¥kén( a BN with hidden vari-
ables and non-experimental distribution. It is known that this method usualiyswWaster than direct
implicitization. We apply it to our problem in which we have a set of interventidisitibutions.

Suppose we have a causal BNwith n observed variable¥;, ..., V, andn’ unobserved variables
Ui,...,Uy and a set of interventional distributiof,, for G. Let ¥ be the ring homomorphism

defined in (5.4). We denotEiLrJnv be the set of joint distributions assuming that@l, ..., U, are

observed
Pty = {PLVUIPL(V) € Piny}. (5.33)
Let @ denote the ring homomorphism
®: R[Jpu | = R[M] (5.34)
induced by the mapping
= || o pau ]n_[ - (5.35)
(iVigT) j=1

For the non-experimental distributid?(v), Garcia et al. (2005) showed that
ker(¥) = ker(@) N R[Jpuy]- (5.36)
It can be naturally extended to the case of arbitRyy,. We have
ker(?) = ker(@®) NR[Jp,,,]. (5.37)

Following Garcia et al. (2005), keP) can be computed in two steps. First, we computedecr-
responding to the case where all variables are assumed to be obsEnestlwe compute the subset
of ker(®) that corresponds to the polynomial constraints on observable distributida have imple-

mented our method using a computer algebra system, Singular (Greuel 808)., 2

5.3.2 Reducing the Implicitization Problem Using Known Constraints

We can reduce the complexity of the implicitization problem by using some knowstreints

among interventionaldistributions. Given the set of joint space paramiigrssuppose that we have
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some known constraints amodg, ,, stating that a joint space paramefgrcan be represented as a

intv

polynomial function of some other joint space parameteidyjpn \ p.. Then, the relation reduces the

implicitization problem as follows. Let be a polynomial function such that
Py = f(Ipny \ BV (5.38)
and let¥ and¥”’ be two ring homomorphisms
¥ R[Jp,,] = RIM], ¥ : R[Jp,, \ p] = R[M]. (5.39)
Then, we have

ker(¥) = ker(¥”) + (bl — f(Jp,,, \ ). (5.40)

This suggests that the more we find such relations among parameters, thevencam reduce the
implicitization problem. The following two lemmas provide a class of such relations.

A c-componenis a maximal set of vertices such that any two vertices in the set are codycie
path on which every edge is of the form U --> whereU is a hidden variable. A s&& C V is called

anancestral seif it contains its own observed ancestors.

Lemma 4 Tian and Pearl (2002l)et T C V and assume that VT is partitioned into c-components

H1,..., H; in the subgraph @/ \ T). Then we have
Pv) = [ | Pun (). (5.41)
i
Lemma 5 Tian and Pearl (2002)et CC T C V. If V\ T is an ancestral setin & \ C), then

PV) = )" Pe(v). (5.42)

t\c

We give a procedure in Figure 5.2 that lists a set of polynomial relations g®gg based on
these two lemmas. Given a set of joint space parameéigs it outputs a subsel,  of Jp,,, which
contains the joint space parameters that cannot be represented as@palyfunction of other joint
space parameters, and the idegkenerated by all the relations found by Lemma 4 and Lemma 5. In
Step 1, we look for the parameters that can be represented as thetppbdtieer parameters using
Lemma 4. In Step 2, we find the parameters that can be represented amtbé athher parameters

using;emmas5-\Wehave the following proposition.
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procedure PolyRelationgG,Jp, )

INPUT: a causal BNG, joint space parameteds, ,, associated with a set of interventional distributions
Pintv
OUTPUT: a subsetJ,’Dintv c Jp,, Of joint space parameters and the idéajontaining polynomial
relations among the joint space parameters
Initialization:
=0
',Dintv = Py
Step 1:
for eachp}, € J, do
LetHy, ..., H, be the c-components in the subgra&pty \ T).

=1+ (ol - | ™

|
Toyy = oy, \ P
end for
Step 2:
for eachp|, € J, do
if there is a joint space paramefgrthat satisfies
()CcTCV
(i) V\ T is an ancestral set B(V \ C)
then
=1+ ¢ph = > pt)
t\c
Toy, = o, \ P
end if
end for

Figure 5.2 A procedure for listing polynomial relations among interventioisal d
tributions

Proposition 7 Given a set of interventional distributiod®,R, a causal BN G with hidden variables
and a ring homomorphisii defined in (5.4), Iet,’,]intv and | be the results computed BglyRelations

Then,
ker(¥) = ker(#’) + | (5.43)
where¥’ is a ring homomorphism
¥ R[] - R[M]. (5.44)

To illustrate the procedure, consider a causal®WNith four observed variableg;, V>, V3, V4 and

oneghiddenyvariabl&lmingkigure 5.3 (a). We will compute keF| for the set of all interventional
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Ui U
’/1/ \\\‘ ‘// vi \\\‘
Vie—Vy— V3V, Vie—Vy, V3
(a) (b)

Figure 5.3 Two causal BNs with one hidden variable

distributionsP, usingPolyRelations In Step 1, we find that most of joint space parameters can be

represented as the product of other parameters. For example, we have
PUE = VAV pavaus pinvavs (5.45)
sinceV \ Vi = {V2, V3, V,} is partitioned into three c-componetb}, {V3} and{V,}. Also,
by = pl2py” (5.46)

sinceV \ Vo = {V1, V3, V4} is partitioned into two c-componenigs, V3} and{V4}. The only joint space

parameters that do not decompose in Step 1 are

P2V, plavaVa | pVavavs | NV g pVivaVa, (5.47)
Thus, after Step 1 we have
TP = JPusvs (9, Purvay (- Pugyps (V) Pusia (V) Py (DWW Vo Vo Va) (5.48)
In Step 2, we find that
P2 = " pi2 andpla = 3" pit (5.49)
V3 Vi

sinceV\{Vy, V3, V4} = {V1} andV\{V1, V>, V4} = {V3} are ancestral sets®(V\{V>, V4}) = G({V1, V3}).

After Step 2, we have

J',Dintv = ‘J{ Puov (V. Pypvgvy (V). Pypvovs (V):VV1,V2,V3,Va}) (5 : 50)
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andl is generated by all the relations found in Step 1 and 2. Finally, we have
ker(¥) = ker(®’) + | (5.51)
where¥’ is the ring homomorphism
¥ i R[Jp 1 R[M]. (5.52)
Moreover, we find that ke¥(") can be represented as REgf + ker(¥») + ker(¥3) where

Y1 R[J{PVZV4(V)ZVV2,V4I] - R[M], ¥2: R[J{P\,lvs\,d(v):\!vl,V3,V4}] — R[M], ¥3: R[JP(V1V2V3(V)SVV1,V2,V3I] — R[M]
(5.53)

since the mappings inducing, ¥, and¥3 do not share model parameters. This gives

ker(®) = ker(¥1) + ker(¥2) + ker(¥3) + 1. (5.54)

Compared to the original implicitization problem of computing K8r{nvolving 240 joint space pa-
rameters which is intractable, we now have three small implicitization problems. @omker®;)
involves 16 joint space parameters and each of the computation &f-kea(d ker’s) involves 16
joint space parameters. The reduced problem can be solved easily.

Note thatJ,;intv computed byPolyRelationsin the above example contains only the joint space
parameters related to c-component&inThis holds generally foG in which the subgrapl®(C) for

each c-componeii of G has no edges.

Proposition 8 Let Cy,...,C; be c-components of a causal BN G. If every subgragf;has no

edges, then
kerW) = kerW1) + ...+ ker(¥)) + 1 (5.55)
where
i 1 R[Jipy ) vwc] = RIM] (5.56)

and | is the ideal computed by the procedi@yRelations
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The implicitization problem for a large causal BBlis computationally feasible & has the structure
described in Proposition 8 and the size of each c-compone@Gtismsmall. Our method becomes
infeasible as the size of each c-component grows.

In general, there may be some constraints that are not included in theatoissfor each c-
component and cannot be found by Lemma 4 and 5. For example, forukal&NG in Figure 5.3

(b), we find the following constraint by the method in Section 5.3.1 using theugingystem:

V=2 Vo=1 V=2 Vo=1 V=2 Vo=2 V=1 ,Vo=2 V=1, Vo=2
p222p122 p211 + p222p122 p212 + p212p122 p221 + p122p212 p221 + p222p212 p221

 Va=2 Vo=l Vp=2 \Vo=2 V=2 Vo=1, Vp=2 Vo=l Vo=2  \p=2 Vp=1 V=2
P122 Po1p Pooq + P212P155 Pooy = P122P571 Poon + P222P515" Poss = P12 Pon Pozo

Vo=2 Vo=2 Vo=l Vp=2 Vp=2 V=2 Vo=2 Vo=l Vp=2 Vo=2 _ Vp=1
+ P212P551 Pooo = Po1o Poog Pooo + P212P255 Pooo = Poin™ Poso Poso = P222P575
Vo=2 Vo=l Vo=2
- p212p222 + p212 p222 (557)

which is in ker") but cannot be induced by Lemma 4 and 5.

5.3.3 Constraints in Subgraphs

When the sizes of the c-components of a causal BN are large, it may rieagible to compute
the polynomial constraints by the methods described thus far. InstegEhssithat we wish to test a
part (subgraph) of a causal BN assuming that all the conditional imdiepee relations captured by
the causal BN are correct. Our goal is to compute constraints (by implicitizdtothis subgraph or
another subgraph that includes the subgraph with as small number of adblitertices as possible.
This can be achieved by finding a subgraph in which the local Markopepty (every variable be
independent of all its nondescendants conditional on its parents) isezhtidiore formally, given a
causal BNG and a subse® ¢ VU U, we seek to find the smallest &t such thaS ¢ S* ¢ VuU and
for everyX € S*, X 1L NDs+(X)|PAs-(X) where Ny (X) is the set of nondescendants)oin G(A) and
PAA(X) is the set of parents of in G(A). It is easy to see that the local Markov property is satisfied for
G(AN(S)) where ANE) is the union ofS and the set of ancestors of the verticeSirHowever, there

can exist a smaller such sgt than AN(S). By these conditional independence relations, we have the
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Figure 5.4 Testing a subgraph that includes the vertige¥, andV;

following factorization:

Penv=> [ Pubasv) [] P (5.58)

SNuilVieS NV} {jlujes*nU}

Given this factorization, the truncated factorizations for intervention#illigions are straightforward.
These factorizations define the implicitization problem for the subg&(#t), which involves fewer
joint space parameters and model parameters than those in the implicitizatieenpfobG. Then, we
can test the subgrapgh(S*) using the polynomial constraints computed by the methods described in
the previous sections.

The conditional independence relations in a causal BN are specifieclatgbparation criterion
as defined in the following Pearl (1988).Xf Y andZ are three disjoint subsets of vertices in a DAG,
thenZ is said tod-separate XromY if along every path between a vertexXrand a vertex ir¥ there
is vertexw satisfying one of the following two conditions: iy has converging arrows and nonevof
or its descendants are #) of (ii) w does not have converging arrows amds in Z. If a path satisfies
this condition, it is said to bblocked otherwise, it is said to bactivatedby Z.

Suppose that we wish to test a subgraph including the vettige® andVs of a causal BNG in

Figure5:4.wherdyandB.are,subgraphs consisting of a large number of vertices. Considegeaptib
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G({V1, V2, V3,U1}). If the local Markov property were satisfied, then we would have thfaation
P(v1,V2,v3) = 3, P(vilv2) P(v2lup) P(vslu)P(u1), which would define a new implicitization problem
with new sets of joint space parameters and model parameters. Howevar, V3|U; and V3 1L
{V1,V2}JU1 do not hold in the entire grap8 and the factorization does not follow. This is because
there is an activated path betweéénandVs: V, «— V4 — V3 (also, there may be another activated path
via vertices inT) in G. Hence, we look for some other parents/ef(together withU1) that d-separate
Vs, from V3. We find that{U1, V4} d-separate¥, from Vs. In G({V1, V2, V3, V4, U1}), the local Markov
property is satisfiedVy 1L {V3, V4, U1}|V2, Vo 1L V3|{V4, U1}, V3 1L {V1, V2}|{V4, U1}, Vs L Uz. Thus,
we have the factorization
P(v1, V2, V3, Va) = Z P(V1Iv2) P(v2lVau1) P(v3lVaus) P(va) P(u1) (5.59)
Ui

which defines an implicitization problem for the subgr&i(iVi, Vo, Vs, V4, U1}).

The next lemma provides the basis for finding the smallest subgraph (dogtaigiven subgraph)

in which the local Markov property is satisfied.

Lemma 6 Suppose that Xt NDs(X)|PAs(X) does not hold and € PAyuy (X) is a minimal set such
that X 1L NDsur, (X)|PAsuT,(X), that is, there is no TC T such that Xu NDSUTi(X)lPASUTi(X). Also,

suppose that 7 < PA,uu(X) is a minimal set such that X NDsyr, (X)|IPAsuT,(X). Then, & = T,.

In other words, there is a unique minimal §etc PAyuu(X) such thatX 1 NDgyt(X)|PAsuT (X).
Proof: Suppose for a contradiction that # T». Then, by the minimality assumptioi \ T> # @ and
T>\T1 # 0. Leta be avertex i1\ To. Then, there is an activated path (byfr,\o)(X)) X <= a---n

for somen € NDs(X) (otherwise,T1 would not be minimal). There are two cases to consider.

() For every vertext in the pathX « a---n,t ¢ T\ T1. LetBs,....8 € T1\ T2 such that
X & a---B1---Bi---n. Then, the patlX « g;---nis activated by PAuT,(X) sincegs; ¢ T».

This contradicts that P4, (X) d-separateX from n.

(if) There is a vertext in the pathX < a---nsuch that € T, \ T1. Letry,...,rj € T2\ Ty such
thatX < a---ry---rj---n. Then, the patiX < r; - - - nis activated by PAur, (X) sincer; ¢ T.

This.contradicts.that,RPA 1, (X) d-separateX from n.
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procedure MarkovSubgraph(G,S)
INPUT: a causal BNG, a listS of vertices inG
OUTPUT: an updated lis
while truedo
start_size:= S.sizd)
i=1
while i <= S.siz€) do
T:=PAS[])\S
for eachA € PA(S[i]) \ S do
if S[i] 1 NDs(S[i])|PA(S[i]) \ Athen
T:=T\A
end if
end for
S=SUT
i=i+1
end while
Break if S.siz€) == start_size
end while

Figure 5.5 A procedure for finding a subgraph in which the local Magkoperty
is satisfied

Hence, it follows thalT; = To. [

We give a procedure callddarkovSubgraph in Figure 5.5 that extends a given subgraph so that
the local Markov property is satisfied in the extended subgraph. GigebgraptG(S), MarkovSub-
graph examines the local Markov property for each ver8§y in S. If the condition is not satisfied,

a minimal sefl of parents ofS[i] that d-separates (together with &5Ji])) S[i] from NDs(S[i]) are
added taS. Finding this minimal set can be done by eliminating from ) \ S the vertices that

are not necessary for the d-separation. By Lemma 6, folSasych thaS ¢ S’ and the local Markov
property is satisfied i6(S’), we have thal C S’ (otherwise, suci cannot be unique). Thus, the
outputS of MarkovSubgraph is the smallest set such that the local Markov property is satisfied and

(5.58) follows.
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5.4 Model Testing Using Polynomial Constraints

In this section, we consider the problem of testing a causal®3glven a data seD using the
equality constraints induced I6y. D may be either observational or experimental data. To simplify the
discussion, we will focus on a single data Betince it will be obvious that the same idea can be applied
to a set of experimental data sets. To apply these constraints to finite daaaticg@rwe need to design
test statistics for non-independence constraints. However, thesmdependence constraints are in
general too complex to obtain theoretical test statistics. We ismtstrapmethod (Efron, 1979) to
avoid this dfficulty. In particular, we use a parametric bootstrap method, in which a paiametdel
is fit to the data, by maximum likelihood, and samples are drawn from this parametdel. Then,
the estimate of a constraint is calculated from these samples.

In general, we may use any single equality constrainduced byG as follows. First, we compute
the bootstrap distribution of. Then, we select an appropriate critical region. If the estimate ar
D is in the critical region, we rejed. Our goal is to have small Type | and Type Il errors. To this
end, we propose to use a set of equality constraints simultaneously by ddeiabsolute values of the
constraints and using it as a single constraint. For example, the causad BNFigure 5.6 induces the
following constraints: For any; andv,,

a(Vi, Vo) = Z P(V1=Vi1lVo = V2, V3 = V3,V = 1)P(V3 = v3|V4 = 1)

V3

- Z P(V1 = vi1|V2 = Vo, V3 = v3, V4 = 2)P(V3 = v3|V4 = 2)

V3

=0 (5.60)

assuming thaV, is binary. We can combine these equality constraints to form a single equaiity co
straint:
f= Z lg(v1, v2)| = 0. (5.61)
V1,V2
Note that the combined constraint is satisfied if and only if all the originaltcaings are satisfied.
Moreover, a test using the combined constraint is likely to give a smaller Mygyeor than using the

original constraints separately. Suppose thatas been generated by some other causal@BNIt

www.manaraa.com



67

U U
’/// \\\‘ ‘/// \\\‘
Vie—Vy— V3V, Vie—Vy—V3<—V,

Gl G2

Figure 5.6 Two causal BNs that are Markov equivalent

Testing a causal BNG given a data setD

1. Compute an equality constraihfrom G.
2. Learn the parameters Gfusing the EM algorithm.
3. Sample data se3;, D3, ..., Dy from G with the learned parameters.

4. Compute the estimatf@i* of fonD; fori=1,....k

5. Determine a critical region: Decide a value= argmiry ‘p - |{fDi"|fD? > ﬁ}|/k‘ wherep is a
significance level.

6. If the estimatdp of f onD is greater tham, then reject.

Figure 5.7 A model testing procedure for a causal BN using a polynomial co
straint

may be dificult to rejectG’ based on each constraint, but the combined constraint may give ustenoug
confidence to rejed®’. Figure 5.7 describes our proposed model testing procedure.

It is easy to generalize this procedure to a set of experimental dat®;ggtsNe simply replace a
data seD; with a set of data se®; in the procedure. Then, sampling data sets and computing the
estimate of the constraint are straightforward.

We now demonstrate our model testing procedure using data sets geibgredersal BNs in Figure
5.7. We wish to test a causal BB} against the alternative causal BB given a data set. We used

the constraintf in (5.61) for the test. We generated 150 data sets f&nand another 150 data sets

from G, and measured the Type | and Type Il errors of our testing proceBoreStep 3 of the testing
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Table 5.1 The Type | and Type Il errors in testiBg againsiG,

p=0.05 p=001

N Typel Typell| Typel Typell
1000| 0.0400 0.0733 0.0200 0.1733
2000 | 0.0667 0.0667 0.0067 0.1200

procedure, we sampled 100 data sets. We repeated this for fi@oedi sizedN = 100Q 2000 of each
data set. Table 5.1 shows the Type | and Type Il errors for two signdiEkavelsp = 0.05,0.01.

Note thatG; andG, are Markov equivalent: They induce the same set of conditional indiepes
relations. It is known to be ficult to differentiate Markov equivalent models using only observational
data. Our testing procedure provides a way feedéntiate Markov equivalent modéls andG,. Now
suppose that we wish to select one model fi@iandG, given a data sdd. Some scoring functions
can be used to evaluate each model. We experimented withitiienum description length (MDL)
scoring function for this purpose. We sel&st if the MDL score ofGy is smaller than that o&, and
selectG, otherwise. We measured the error rate of the selection method on 150 W@, and
another 150 data sets fra@». Our testing procedure in this section gives an alternative way to select a
model fromG; andG,: We selectG; if G; is not rejected by our test using the constrdir@nd select
Gy otherwise. The error rate of our selection method is simply the average ®¥pieel and Type II
errors in Table 5.1. Table 5.2 compares the error rates of the two methodsis kExperiment, our
method based on a polynomial constraint clearly outperformed the MDedbasthod, which was not
better than random.

This model selection method based on a polynomial constraint is not easéiyadjead to selecting
a model from more than two models. Affitulty is that there may be multiple constraints, each of
which is induced by a distinct model. How to use these multiple constraints to setéogle model
from a set of candidate models needs further study. However, if yaootimeed to select a single

model, our testing procedure can be used to reduce the size of the aetlafate models.
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Table 5.2 Comparison of the error rates of two model selection methods

Constraintf
p=0.05 p=001

MDL

1000
2000

0.0567  0.0967
0.0667  0.0634

0.5500
0.5767

www.manharaa.com



70

CHAPTER 6. INEQUALITY CONSTRAINTS IN CAUSAL BAYESIAN
NETWORKS

We present a class of inequality constraints on the set of distributionsaddhydocal interventions
on variables governed by a causal Bayesian network, in which some ehtiables remain unmea-
sured. We derive bounds on causfikets that are not directly measured in randomized experiments.
We derive instrumental inequality type of constraints on nonexperimentaibdisons. The results

have applications in testing causal models with observational or experinciatal

6.1 Constraints on Interventional Distributions
Let P, denote the set of all interventional distributions induced by a given semkdviean model,
P, = {P{(W)|T € V,t e DM(T),v e Dm(V)} (6.1)

where Dm(T) represents the domain df. What are the constraints imposed by the model on the
interventional distributions if,? The structure of the causal gra@hwill play an important role in
finding these constraints. &ccomponenis a maximal set of vertices such that any two vertices in the
set are connected by a path on which every edge is of the éorth --> whereU is a hidden variable.
The set of variableV is then partitioned into a set of c-components. For example, the causal@rap
in Figure 6.1 consists of two c-componef¥sY, Z} and{Wy, W>}.

Let G(H) denote the subgraph & composed only of the variables ith and the hidden variables
that are ancestors éf. In general, equality constraints on the set of interventional distributiande

found using the following three lemmas.

Lemma 7 Tian and Pearl (2002H)et H € V, and assume that H is partitioned into c-components

HaseeesHpinthe.subgraph.@). Then we have
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(i) Pwn(v) decomposes as

Pun(¥) = | [ Pun (). (62)

(i) Let k be the number of variables in H, and let a topological order of vheables in H be

Vi, < ... < Vh in G(H). Let HY = {V4, ..., Vi, } be the set of variables in H ordered beforg V

(including \f,), i = 1,....k, and H? = 0. Then each Rn,(v), j = 1,...,I, is computable from
Pwn(v) and is given by
P (i)(V)
Pan = [] 5o, (6.3)
{ilViy €Hj} V\h(l_l)(v)
where each Ryn(v), i =0,1,...,K, is given by
Pano() = D~ Pun(V). (6.4)

0
A special case of Lemma 7 is whéh=V, and we have the following Lemma.

Lemma 8 Tian and Pearl (2002bssuming that V is partitioned into c-components.S., Sk, we

have
(i) P(V) = [Ti Pus (V).
(i) Let a topological order over V be V< ... < V,, and let ) = {V4,...,Vi},i = 1,...,n, and

V@ = 0. Then each Rg (V). j = 1,...,k, is computable from @) and is given by

PasM =[] PGM™). (6.5)

{ilVieSj)
The next lemma provides a condition under which we can comPuigw) from Py ¢(c) whereW

is a subset o€, by simply summindy\c(c) over other variable€ \ W.

Lemma 9 Tian and Pearl (2002)et Wc C € V, and W = C \ W. If W contains its own observed

ancestors in @), then

Z Puc(V) = Puw(V). (6.6)

The set of equality constraints implied by these three lemmas can be systematieallipyislightly

modifying the procedure in Tian and Pearl (2002b) for listing equality waims on nonexperimental
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Figure 6.1 U1,U, andU3 are hidden variables.

distributions. We will not show the details of the procedure here since thesfof this chapter is on
inequality constraints.

For example, the model in Figure 2.1 imposes the following equality constraints.

P.(xy) = P(xy12) (6.7)
PyAX) = P(x|2) (6.8)
PxAy) = Px(Y) (6.9)

The model in Figure 6.1 imposes the following equality constraints.

Pwiwo (Xy2) = P(Z2w1xwey) P(yiwi xwe) P(Xw1) (6.10)
Pwawoz(XY) = P(yIwiXwz) P(x|w:) (6.11)
Puaiy(X2) = Puyy(X2) (6.12)
Puywzx(¥2) = Pwyx(y2) (6.13)
Pugngy(X) = P(XIwy) (6.14)
Pugwizxely) = Pwox(y) (6.15)
Pwywoxy(2) = Py(2) (6.16)
PryAWiW2) = P(W2w1 X)P(W1) (6.17)
Pyzw(W1) = P(w1) (6.18)
Pryzw(W2) = D P(walwX)P(ws) (6.19)

Wy
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6.1.1 Inequality Constraints

In this chapter, we are concerned with inequality constraints imposed by almatie P, set

induced from a semi-Markovian model must satisfy the following inequalitstraimts.

Lemma 10 Forany § ¢ V and any superset;Sc V of S;, we have
D1 1Py sus) () 20, ¥ve DM(V) (6.20)
SzQS&\Sl

where|S;| represents the number of variables in.S

Proof: We use the following equation.

k

H(l—a,-):1—Za,-+Za,-aj—...+(—1)ka1...ak. (6.21)
i,

i=1 i
Takea; = P(vjlpaj, u'), we have that
1] Plpa,d) [ @-Pjlpa,u)P) = > (-1)Pysusv) 20 (6.22)
U (ilVvieSy) iIVieS;\S) S2cS;\Sy
since for allV; e V

0 < P(vilpa,u) < 1. (6.23)

For a fixedS] set, there are'?! number of Eq. (6.20) type of inequalities. FoffdrentS; sets,

some of those inequalities may imply others as shown in the following proposition.
Proposition 9 If S} c SY, then the set a?51! inequalities ¥S; ¢ S,

(1P s usy(V) = 0,  Vve DM(V) (6.24)
S2cS/\S1
imply the set o251/ inequalities,¥S; ¢ S/,
(-1)%2Py(qusy(V) = 0, Vv e DM(V) (6.25)
SQQS&\S;L
Assume that the set of variabl¥sin the model is partitioned into c-componefts..., Tx. Due
to the equality constraints given in Lemma 7, instead of listifgEy. (6.20) type of inequalities, we

only-need-to-give 2i-Eq:(6:20) type of inequalities for each c-comporignt
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Proposition 10 Let the set of variables V in a semi-Markovian model be partitioned intneponents
T1,..., Tk. Thef® set must satisfy the following inequality constraints: ferl,...,k,¥S; C Tj,
> 1Py sus() 2 0, Vv e DM(V) (6.26)
SoCTi\Ss

For example, Proposition 10 gives the following inequality constraints fomthéel in Figure 2.1,

1 - Pyy(X) — Pedy) + Po(xy) = 0 (6.27)
Py(X) — Py(xy) > 0 (6.28)
PurlY) — Po(xy) > 0 (6.29)
P2(xy) > 0, (6.30)

in which (6.30) is trivial, and (6.28) becomes trivial because of equalitgtraints (6.7) and (6.8).
For the model in Figure 6.1, Proposition 10 gives the following inequality tcaimss for the c-

componentX, Y, Z},

1 — Puywoyz(X) = Puwpwoxz(y) = Pwawoxy(2) + Puawoz(XY) + Pugwoy(X2) + Puw,x(Y2)

= Puwy(xy2 > 0 (6.31)
Pwawoyz(X) = Puawoz(XY) = Pwawoy(X2) + Pwyw,(Xy2 > 0 (6.32)
Puooxay) = Paawoz(XY) = Puawox(Y2) + Puy, (Xy2 = 0 (6.33)
Pwiwoxy(2) = Pwawoy(X2) = Puguox(¥2) + Pwyw, (Xy2 2 0 (6.34)
Pwiwoz(XY) = Pwqws (Xy2 > 0 (6.35)
Pwiwoy(X2) — Pwawy(Xy2 > 0 (6.36)
Pwiwox(Y2 — Pwyw, (Xy2 > 0 (6.37)
Pw,w,(Xy2 > 0, (6.38)

some of which are implied by the set of equality constraints (6.10)-(6.19)anltbe shown that all
inequality constraints for c-compongi,, W,} are implied by equality constraints.
Note that in general, the inequality constraints given in this section are nabthplete set of

constraints that are implied by a given model. For example, for the model givgure 2.1, the sharp
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bounds orP(y) given in Balke and Pearl (1994) ff, Y, andZ being binary variables are not implied
by (6.27)-(6.30).

6.2 Inequality Constraints On a Subset of Interventional Dstributions

Proposition 10 gives a set of inequality constraints on the set of intermahtigstributions irP,.. In
practical situations, we may be interested in constraints involving only a csttbget of interventional
distributions. For example, (i) We have done some experiments, and obRifwdor some sets.
We want to know whether these data are compatible with the given model. Fputpisse, we would
like inequality constraints involving only those known interventional distrib&jdin A special case of
(i) is that we only have the nonexperimental distributR). We want inequality constraints d?(v)
imposed by the model; (iii) In practice, certain experiments may firdit or expensive to perform.
Still, we want some information about a particular causgétat, given some known interventional
distributions and nonexperimental distribution. We may provide bounds ncecoed causalfiect
that can be derived from those inequality constraints (if this cauigadtds not computable from given
guantity through equality constraints).

To restrict the set of inequality constraints given in Proposition 10 to aaingdrinvolving only
certain subset of interventional distributions, in principle, we can trezt Bgv) for an instantiation
of ve Dm(V) as a variable, and solve the inequalities to eliminate unwanted variables udimgdse
like Fourier-Motzkin elimination or quantifier elimination. However, this is typicaltyyopractical for
small number of binary variables due to high computational complexity. In thisteh we show some
inequality constraints involving only interventional distributions of interests¢ha be derived from
those in Proposition 10. In general, these constraints may not include glb#séle constraints that
could be derived from Proposition 10 in principle.

Instead of directly solving the inequality constraints given in Propositiom&l¢onsider the in-
equality in Eq. (6.20) for ever$; c Ti. We keep every inequality that involves only the interventional
distributions of interests. Those inequalities that contain unwanted intermehdiistributions may lead

to some new inequalities. For example, in the model in Figure 6.1, considerliithwify inequality
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that follows from (6.20) witt5; = {Z} andS] = {Y,Z},

PW1W2Xy(Z) - PW1W2X(yZ) > 0 (639)

Suppose we want constraints By,w,x(y2) and get rid of unknown quantitip,w,xy(2). First we have

equality constraints (6.13) and (6.16), and Eq. (6.39) becomes
Pwox(Y2) < Py(2) (6.40)

Pw,x(Y2) is a function ofW, and X but Py(2) is not, which leads to

maxPw,x(Y2) < Py(2) (6.41)
Wo, X

E maxPy,x(y2 < 1 (6.42)
7 Wa,X

Eq. (6.42) is a nontrivial inequality constraint &g,w,x(Y2 = Pw,x(Y2), which can also be represented

as

Pupx(Y20) + Pwyx (yz) < 1 (6.43)

for anyw, € Dm(W5), x € Dm(X), w;, € Dm(W,) andx’ € Dm(X) whenZ is binary Om(Z) = {2, z1}).

From the above considerations, we give a procedure in Figure 6.2 tedhksgnequality constraints
on the interventional distributions of interest. The procedure has a comyptéx32Til. Note thatA
will always contain the nonexperimental distribution and all interventionaliligtons that can be
computed fromP(v) (via equality constraints).

In Step 1, we list the inequalities that do not involve unwanted quantities (i.eryemtigonal dis-
tributions not included i®\). Note that we remove some redundant inequalities based on the following

lemma.

Lemma 11 Let SugS;) denote the set of supersets qfstich that § € SulS;) if and only if every
interventional distribution in g s; = ZSZQSQ\Sl(—l)SZ'PV\(SNSQ)(V) > 0is in A. For a set of sets W, let
Max(W) = {S|S € W, there is no $ € W such that Sc S’} denote the set of maximal sets in W. Then,

the set of inequalities
VS1 C T, VS| € Max(SugSy)),

D (~1¥Py(sus)(V) = 0,¥v € DM(V) (6.44)
S,CS;\S1
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procedure FindineqqG,A)
INPUT: a causal grapfs, interventional distributions of interest equality constraints implied b
OUTPUT: inequalities of interestsE, for each c-componenr, i =1,...,k
Step 1:
For eachc-component;,i =1,...,k
For eachS; C T; (small to large)
For eachS; c T such thatS; ¢ S/(small to large)
Study the inequality
€s,.s; = Nsyes)s, (1) Py (sus) (V) 2 0
If every interventional distribution ile,s'l isin A
|Ev, = IE1, U{es, s > O}
Remove angs, r in |ET, such thaR c S7;
Step 2:
For eachc-component;,i=1,...,k
For eachS; C T; (small to large)
For eachS; ¢ T such thatS; ¢ S/(small to large)
Study the inequality
€s,s; = Nsyess, (1) Py sus) (V) 2 0
If some interventional distribution iegl,sfl is
notinA
|Et, = IET, U{es, s; > 0 reformulated
in the form of (6.54);

Figure 6.2 A Procedure for Listing Inequality Constraints On a Subsattef-|
ventional Distributions

imply the inequalities

VS, C Ti,VSi € SUF(S]_)

> (~1¥Py(sus)(V) = 0, Vv € DMV). (6.45)
S2CS;\S1

Proof: We will show that if the inequalities in (6.44) hold, then for amg |V| we have

¥S; € Ti, ¥S) € MaxX(SugS1)),

D (-1)%Pysus)(V) = 0,¥v € DM(V) (6.46)
SzQS'l\Sl

whereMax'(S) = Max(S \ {RR € S,|R > n}). (6.45) will follow from (6.46) if we letn be the size of
the setS] in (6.45). Assuming (6.44), we prove (6.46) by inductionron
Basein=:|V|=(6:46)isequivalent to (6.44).
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Hypothesis: Assume that

¥S; € T, ¥S) € Max(SugS1)),

(—1)52Py (,usy) (V) = 0, ¥V e DM(V). (6.47)
SQQS&\S1

Induction step: We show that

VS1 C Ti, ¥S) € Max*™}(SugSy)),

D 1Py (sus) (V) = 0,¥v e DM(V). (6.48)
SzQS&\Sl

If S]] < n-1, thenS] is in Max(SugS1)). Thus, (6.48) follows from (6.47). I5}| = n -1, then
one of the followings should hold.

Case 1] is in Max'(SufSz)).

Case 2: There exists a variabiesuch thatS] U {a} is in Max"(SugSy)).

In Case 1, (6.48) follows from (6.47). In Case 2, we have

(—1)52Py\(susy) (V) = 0, Vv € DM(V) (6.49)
S2C(S}Ula})\S1

and

(~1)52Py\ (5, uatusy (V) = 0, YV e DM(V). (6.50)
S2CS;\S1

(6.50) follows from (6.47) sinc&] U {a} is in Max(S ugS1 U {@})). Summing (6.49) and (6.50) gives
(6.48).m
In Step 2, we deal with the inequalities that contain unwanted quantities as$oNue/rewrite the
inequality in Eq. (6.20) ass, s; > 0, with
es,s; = ), (CDRTSIP () + Y ()RR () (6.51)
ReW; ReW>
whereW; = {S1 U Sy|S, C S1\ Sy, Pu(siusp) (V) is in A} andWs = {S; U Sy|S; < Si\ Sy, Pu\(susy) (V)
is notinA}. We have

DEDRIIR, W) 2 - ) (D)RISIR (). (6.52)

Re Wl R€W2
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Suppose the left-hand side is a function of varialidgeand the right-hand side is a function of variables
E,. Then,
min > (-1RS1Py (V) > = " (-)RISIR, (). (6.53)
E\E2 o ReW:

Let Q = Urew, R We obtain,

> min 3 (RSP (v > - Y (-D)REE ] pmvi)l (6.54)

o BB g ReW; (iIVieQ\R}

Note that ifE; \ E» = 0, then we do not need ming,.

To illustrate the procedure, suppose we want to get the inequality cotstoairthe two inter-
ventional distributionsPy,w,xy(2) and Pw,w,x(y2) and we are given a tried interventional distribution
Puwiway(X2).

In Step 1, consider the loop in whidh = {X,Y,Z} andS; = {0}. The procedure first adds x;
andey z;. When it addsey (x z;, it will remove g (x; andeyz; from IEt, and keepey (x z; which turns
out to beMax(S ug®)). This repeats for everg; C T;.

In Step 2, consider the loop whefe = {X,Y,Z} andS; = {Y}. The procedure studiee*g,l,srl for
eachS] € {{Y},{X, YL {Y,Z},{X Y, Z}}. For example, fo§; = {X, Y, Z}, we have the inequality (6.33).

From (6.10), (6.11), (6.13) and (6.15), we obtain

max( P(yiwaxwe)P(x) + Pux(y2) — P(ZWLXWoY) Py XWo)P(XIWa)) < Pusy)-  (6.55)

Summing both sides ovef gives
2, max( PYWLxwe)P(xwr) + Pux(y2) — AW xWay)P(ylwi xwig) P(xwi) ) < 1. (6.56)
o

6.2.1 Bounds on Causal Eects

Suppose that our goal is to bound a particular interventional distributionthis caseA in the
procedureFindineqs consists of the particular interventional distribution that we want to bourmd, th
nonexperimental distributioR(v), and all interventional distributions that are computable fi(w).

For example, consider the graph in Figure 6.1. Suppose that we wantial llee interventional

distributionPy,\,x,(2) and that the interventional distributidty,.y(x2) is available from experiments.
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FindIneqs will list the following bounds forPy,w,xy(2) in Step 1.

Pwiwoxy(2) = Pwywoy(x2) > 0 (6.58)

which provides a lower and upper bound Ry, w,xy(2) respectively.

6.2.2 Inequality Constraints on Nonexperimental Distribution

Now assume that we want to find inequality constraints on nonexperimentidbaii®on. For this
caseAin the procedur&indinegs consists of the nonexperimental distributiBfv) and all interven-
tional distributions that are computable frd?(v).

The inequality constraints produced Bindinegs in this case include the instrumental inequality
type of constraints. Consider the graph in Figure 2.1. For the c-comp¢Xgyy}, Findinegs will

produce the inequality (6.29). From (6.7) and (6.9), we have
m?xP(xwz) < Px(y) (6.59)
and summing both sides ov¥rgives
> maxP(xyf2) < 1. (6.60)
y

Since this must hold for al, we obtain the instrumental inequality (2.1).

To illustrate more general instrumental inequality type of constraints, cangidegraph in Fig-
ure 6.1. FoiS; = {Y,Z} andS) = {X, Y, Z}, FindInegs produces the inequality (6.37). From (6.10) and
(6.13), we have

maxP(zw1xwzy) P(yws xue) P(XIwe) < Pux(y2). (6.61)
Summing both sides ovéf andZ gives

2, MaxP(Awy xwoy)P(ylws xe) P(xiwa) < 1. (6.62)
yz
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CHAPTER 7. CONCLUSION

This chapter provides a broad summary of our work and proposesas@atential directions of

future work.

7.1 Markov Properties for Linear Causal Models with Correlated Errors

We present local Markov properties for ADMGs representing linedviSkith correlated errors.
The results have applications in testing linear SEMs against the data by testreyd partial corre-
lations implied by the model. For general linear SEMs with correlated err@®rovide a procedure
that lists a subset of zero partial correlations that will imply all other zerigbaorrelations implied by
the model. In particular, for a class of models whose corresponding jzgtachs contain no directed
mixed cycles, this subset invokes one zero partial correlation for esicbfpvariables.

In general, our procedure may invoke an exponential number of zetialpcorrelations if the path
diagramG satisfies all of the following properties: @ has large c-components; (ii) the vertices in
each c-component are heavily connected by bi-directed edges; ar@d [iay directed mixed cycles.
If one of these properties is not satisfied, then the number of zero paoti@lations derived by our
method is typically not exponential.

For the class of MAGs, which is a strict superclass of ADMGs without tiebmixed cycles, one
might use the pairwise Markov property for MAGs given in Richardsah &pirtes (2002) instead of
our results in Section 4.3. However, when the two approaches give a simitadver of constraints, it
may be better to use our approach since it may use smaller conditioning sbtsasis the example
in Section 4.3.2.

The potential advantages of testing linear SEMs based on vanishing partielations over the

classical test method based on maximum likelihood estimation of the covariande hate been
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discussed in Pearl (1998); Shipley (2000); McDonald (2002); Snif@e03). The results presented in
this paper provide a theoretical foundation for the practical applicatibtisiotest method in linear
SEMs with correlated errors. How to implement this test method in practice stiisrfeether study
as it requires multiple testing of hypotheses about zero partial correld&tmsley, 2000; Drton and
Perlman, 2007). We also note that, in linear SBMthout correlated errors, all the constraints on the
covariance matrix are implied by vanishing partial correlations. This alssholtinear SEMswith
correlated errors that are represented by ADM@koutdirected mixed cycles. However, it is possible
that linear SEMswith correlated errors represented by ADM@ish directed mixed cycles may imply
constraints on the covariance matrix that are not implied by zero partialatons.

Although the intended application is in linear SEMs, the local Markov propeptiesented in the
paper are valid for ADMGs associated with any probability distributions taigfg the composition
axiom. For example, any probability distribution that is faithftd some DAG or undirected graph
(and the marginals of the distribution) satisfies the composition axiom.

Model debuggingor ADMGs using vanishing partial correlations is another area of atime-
search. In this model debugging problem, the goal is to modify a graphl bashe pattern of rejected
hypotheses. The properties of ADMGs presented in this paper may faditieatkevelopment of a new

model debugging method.

7.2 Polynomial Constraints in Causal Bayesian Networks

We obtain polynomial constraints on the interventional distributions inducedddayusal BN with
hidden variables, via the implicitization procedure. These constraints cdastifnecessary test for a
causal model to be compatible with given observational and experimertéal A& present a model
testing procedure using theses polynomial constraints.

Future work will investigate the general characterization of the constreamputed by impliciti-
zation for causal BNs without hidden variables, which will be helpful idifig the algebraic structure
of the constraints implied by causal BNs with hidden variables which typicallg bamplicated struc-

tures.

A probability distributionP is said to be faithful to a grap® if all the conditional independence relations embedded in
P are encoded i (via the global Markov property).
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7.3 Inequality Constraints in Causal Bayesian Networks

We present a class of inequality constraints imposed by a given causaitBNiidden variables
on the set of interventional distributions that can be induced from the netWée show a method to
restrict these inequality constraints on to that only involving interventionaliloligiions of interests.
These inequality constraints can be used as necessary test for Arnadshto be compatible with
given observational and experimental data. Another application permits lbgund the ffects of
untried interventions from experiments involving auxiliary interventions thateasier or cheaper to
implement.

We derive a type of inequality constraints upon the nonexperimental disbribim a complexity
of 3™ wherem is the number of variables in the largest c-component. These constrarite@osed
by the network structure, regardless of the number of states of ther¢eldser hidden) variables
involved. These constraints can be used to test a model or distinguishelpetmaglels. How to test
these inequality constraints in practice and use them for model selection meutderesting future

research.
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